King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics Math605-01 / Instructor: Prof. Bilal Chanane Major Exam I Duration 2hrs

Name:.....ID:....

Question	Points	Mark
1	30	
2	30	
3	20	
4	20	
Total	100	

Exercise 1 Consider the integral

$$f(x) = \int_0^\infty f(t)e^{x\phi(t)}dt$$

with $f(t) = \exp(-\frac{1}{t})$ and $\phi(t) = -t$.

(a) Show that Watson's lemma cannot be applied directly to determine the leading behaviour of f(x) as $x \to \infty$. Justify your answer.

(b) Find the location t of the maximum of the integrand. Note that it is a movable maximum since t depends on x,

(c) Use the change of variable $t = \frac{s}{\sqrt{x}}$ then apply Laplace method to the resulting integral to determine this leading behaviour of f(x) as $x \to \infty$.

Exercise 2 Use the method of stationary phase to obtain the leading behaviour of $J_n(n)$ as $n \to \infty$ where J_n ios the Bessel function which has the integral representation,

$$J_n(x) = \frac{1}{\pi} \int_0^\pi \cos(x \sin t - nt) dt$$

Exercise 3 Show that the sequence $\{\sin^n x\}_{n\geq 0}$ is asymptotic as $x \to 0$, then find the asymptotic series of $f(x) = \tan x$ with respect to these gauge functions as $x \to 0$.

Exercise 4 Find asymptotic expansions for the roots of the equation,

$$\epsilon x^3 + x^2 + 2x - 3 = 0$$

as $\epsilon \to 0$ correct to $o(\varepsilon^2)$