```
King Fahd University of Petroleum & Minerals
Department of Mathematics and Statistics
Math 550 - Linear Algebra (Term 161)
Midterm Exam
Notes:
- Duration = 3 hours.
- Each problem is worth 10 points.
```

(1) Let F be a field and let n be a positive integer $(n \ge 2)$. Let V be the vector space of all $n \times n$ matrices over F. Which of the following subsets of V are subspaces of V?

(a) $E_1 = \{A \in V \mid A \text{ invertible}\}$; (b) $E_2 = \{A \in V \mid A \text{ non-invertible}\}$; (c) $E_3 = \{A \in V \mid AB = BA\}$; where B is some fixed matrix in V (d) $E_4 = \{A \in V \mid A^2 = A\}$.

(2) Let V be the vector space over the complex numbers of all functions from R into C, i.e., the space of all complex-valued functions on the real line. Let $f_1 = 1$, $f_2 = e^{ix}$, $f_3 = e^{-ix}$ and let $g_1 = 1$, $g_2 = \cos(x)$, $g_3 = \sin(x)$. (a) Prove B= { f_1 , f_2 , f_3 } is linearly independent. (b) Find an invertible matrix P = (p_{ij}) such that $g_j = \sum_{1 \le i \le 3} p_{ij}f_i$, for j = 1, ..., 3

(c) Compute P^{-1} .

(d) Is B a basis for V?

(3) Let n be a positive integer and let V be an n-dimensional vector space over a field F. Let A = (a_{ij}) be an n × n matrix given by $a_{ij} = 1$ for i = j + 1, $1 \le j \le n -1$; and $a_{ij} = 0$, otherwise.

(a) Let T be a linear operator on V such that $T^n = 0$ and $T^{n-1} \neq 0$. Prove that there is an ordered basis B for V such that $[T]_B = A$.

(b) Use (a) to prove the following result: Let M and N be two $n \times n$ matrices such that $M^n = N^n = 0$, $M^{n-1} \neq 0$, and $N^{n-1} \neq 0$. Then M and N are similar.

(4) Let n be a positive integer and F a field. Consider the two subspaces, respectively, of F^n and $(F^n)^*$ given by:

$$\begin{split} &W = \{(x_1, \, \dots, \, x_n) \in F^n \mid \sum_{1 \le i \le n} x_i = 0\} \text{ and } \\ &W_1 = \{f \in (F^n)^* \mid f(x_1, \, \dots, \, x_n) = \sum_{1 \le i \le n} c_i x_i \text{ with } \sum_{1 \le i \le n} c_i = 0 \text{ , } c_i \in F\}. \end{split}$$

Define the linear transformation $\phi : W_1 \to W^*$, $f \to \phi(f)$, where $\phi(f) : W \to F$ denotes the restriction of f to W.

(a) Prove that $W^{o} = \{ f \in (F^{n})^{*} \mid f(x_{1}, ..., x_{n}) = c \sum_{1 \le i \le n} x_{i}, c \in F \}.$

(b) Prove that φ is nonsingular.

(c) Deduce that W_1 and W^* can be naturally identified.

(5) Let a, b, and c be elements of a field F and let A be the following matrix over F:

$$\begin{pmatrix} 0 & 0 & c \\ 1 & 0 & b \\ 0 & 1 & a \end{pmatrix}$$

Let f and p denote the characteristic polynomial and minimal polynomial of A, respectively.

(a) Find f.

(b) Find p.

(6) Let *a* be a nonzero real number and consider the following real matrices:

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix}$.

Let T_1 and T_2 be linear operators on $V = \mathbb{R}^2$ associated, respectively, to A and B in the standard basis. Let p_1 , p_2 denote the minimal polynomials of T_1 and T_2 , respectively.

(a) Find p_1 and p_2 .

(b) Prove the existence of an ordered basis B for V such that $[T_1]_B$ and $[T_2]_B$ are both diagonal. [Do not construct B at this stage]

(c) Construct B explicitly; and use it to find an invertible real matrix P such that $P^{-1}AP$ and $P^{-1}BP$ are both diagonal.

----- Good Luck -----