King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics MATH533 - Complex Variables Final Exam – Semester 161

Exercise 1

Use residues to evaluate the following definite integral

$$\int_0^{2\pi} \frac{d\theta}{5+4\sin(\theta)}$$

Evaluate

(a)
$$\int_{|z|=1} \frac{e^z}{z(2z+1)^2} dz$$

(b) $\int_{|z|=2} (2z-1)e^{\frac{z}{z-1}} dz$ (Hint: use residue at ∞)

True or False (if true, give a short explanation, if false, give a counterexample)

- (a) Let *f* be an entire function such that $\int_{|z|=R} \frac{f'(z)}{f(z)} dz = 0$ for R > 2017. Then *f* is constant.
- (b) If *f* has a removable singularity at ∞ , then $Res(f, \infty) = 0$.
- (c) If *f* has a removable singularity at $z_0 \in \mathbb{C}$, then $Res(f, z_0) = 0$.
- (d) If two entire functions agree on a segment of the real axis, then they agree on \mathbb{C} .

Let $\Omega := \{z \in \mathbb{C} : |z| > 1\}.$

- Let $f(z) = \frac{z}{z-1}$. Show that $\frac{f'(z)}{f(z)}$ has an antiderivative on Ω .
- Show that $\frac{z}{z-1}$ has an analytic logaritm on Ω . You may find the result in part (a) useful.

- (a) Show that the transformation $w = \frac{z-1}{z+1}$ maps the half-plane $\{z \in \mathbb{C} : \Re(z) > 0\}$ onto |w| < 1.
- (b) Suppose that f is analytic on the half-plane $\{z \in \mathbb{C} : \Re(z) > 0\}$ and $|f(z)| \le 1$. Show that $|f(2)| \le 1/3$ if f(1) = 0.

Find all functions f(z) which have in the extended complex plane only the following singularities: a pole of order 3 at z = 0 and a pole of order 2 at $z = \infty$.

Let $f : \Delta \to \Delta$ be analytic from the unit disc to the unit disk.

- 1. Show that $|f^{(n)}(0)| \le n!$
- 2. Prove if f(0) = f'(0) = 0 then $|f(z)| \le |z|^2$ and $|f''(0)| \le 2$.
- 3. Find all analytic functions $f : \Delta \to \Delta$ such that f(0) = f'(0) = 0 and |f''(0)| = 2.

- (a) Show that the equation $z^5 + 15z + 1 = 0$ has precisely four solutions in the annulus $\{z \in \mathbb{C} : 3/2 < |z| < 2\}$.
- (b) Let *f* be analytic in a neighborhood of $\overline{\Delta}$. If |f(z)| < 1 for |z| = 1, show that there is a unique *z* with |z| < 1 and f(z) = z. If $|f(z)| \le 1$ for |z| = 1, what can you say?