King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics MATH533 - Complex Variables Exam II – Semester 161

Exercise 1

Find all the singularities of the following functions, and describe their nature

(a)
$$\frac{1}{z^2(e^z - 1)}$$

(b) $\frac{1}{\cos(1/z)}$

Assume that *f* has an isolated singularity at 0 and $\lim_{z\to 0} |z|^{2/3} |f(z)| = 0$. Show that 0 is a removable singularity of *f*.

Find all analytic functions on \hat{C} with a pole of order 2 at 0.

Find the Laurent expansion of

$$f(z) = \frac{1}{z(z-1)(z-2)}$$

(in powers of z) for

(a) 0 < |z| < 1(b) 1 < |z| < 2

Let $\{n_1, n_2, \ldots, n_k\}$ be a set of positive integers and

$$R(z) = \frac{1}{(z^{n_1} - 1)(z^{n_2} - 1)\dots(z^{n_k} - 1)}$$

- 1. Find a_{-k} the coefficient in the Laurent expansion for *R* about z = 1.
- 2. Find a_{-n} for every n > k.

Suppose that *f* is *entire* and |f(z)| = 1 on |z| = 1. Prove that

$$f(z) = Cz^n$$

(Hint : first use the maximum and the minimum modulus theorem to show that $f(z) = C \prod_{k=1}^{n} \left(\frac{z - \alpha_k}{1 - \overline{\alpha_k} z} \right)$)

Suppose that $|f(z)| \le 1$ for |z| < 1 and f is analytic. By considering the function $g: \Delta \to \Delta$ defined by $g(z) = \frac{f(z) - a}{1 - \overline{a}f(z)}$ where a = f(0). Prove that $\frac{|f(0)| - |z|}{1 - |f(0)||z|} \le |f(z)| \le \frac{|f(0)| + |z|}{1 + |f(0)||z|}$

for |z| < 1.