King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics Semester 161

> Math 513 HW Assignment # 1 Due Date: October 18, 2016

- 1. Consider the function $f(t) = e^t$ on $(-\pi, \pi)$. Find the Fourier series of f(t). What will the series converge to at $t = 2\pi$ and $t = 3\pi$?
- 2. Consider the function $g(t) = t^4$ on (1,2). Find the Fourier series of g(t) [You may use a machine to evaluate the integrals]. Based on the Fourier series of g(t) and the fact

that
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
, evaluate the sum $\sum_{n=1}^{\infty} \frac{1}{n^4}$.

- 3. Let *h* be a given number in the interval $(0, \pi)$ and $f(t) = \begin{cases} \frac{h-t}{h} & \text{if } 0 \le t < h \\ 0 & \text{if } h < t < \pi \end{cases}$.
 - a) Find the Fourier cosine series of f(t).
 - b) Find the Fourier sine series of f(t).
 - c) Discuss the convergence and sketch the series in (a) and (b).
- 4. Write the Fourier series $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n-1} \cos\left(\frac{(2n-1)\pi t}{2}\right)$ in both the cosine and sine phase angle form.
- 5. Find the complex Fourier series for the function in problem 1. Sketch the amplitude spectrum.
- 6. Using Fourier series to solve the differential equation y'' + 4y = f(t), where $f(t) = \begin{cases} 1 & \text{if } -\pi < t < 0 \\ 2 & \text{if } 0 < t < \pi \end{cases}$. [Tip: Use a vertical shift to quickly find the Fourier series of f(t)].
- 7. Consider f(t) with the property that $f(t+\pi) = -f(t)$ for all t.
 - a) Show that the function is periodic.
 - b) Sketch an example of such a function.
 - c) Show that all its even Fourier coefficients are zero (i.e. $a_0 = a_2 = a_4 = a_6 = \dots = 0$, $b_2 = b_4 = b_6 = \dots = 0$.