King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Math 513 Final Exam The First Semester of 2016-2017 (161)

Time Allowed: 180 Minutes

Name:	ID#:
Section/Instructor:	Serial #:

- Mobiles and calculators are not allowed in this exam.
- Write all steps clear.

Question $\#$	Marks	Maximum Marks
1		15
2		15
3		15
4		20
5		20
6		20
7		10
Total		115

Q:1 (15 points) Solve the Sturm- Liouville problem:

$$y'' + \lambda y = 0,$$
 $y(0) + y'(0) = 0,$ $y(\pi) + y'(\pi) = 0.$

Page 3 of 15

Q:2 (15 points) Solve the heat equation

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}, \quad 0 < x < \pi, \quad t > 0$$

subject to the following initial and **non-homogeneous** boundary conditions

$$u(x,0) = 1, \ u(0,t) = T_0, \ u_x(\pi,t) = 0, \ 0 < x < \pi, t > 0,$$

where T_0 is any constant.

Page 5 of 15

Q:3 (15 points) Use Laplace transform method to solve the wave equation

$$\frac{\partial^2 u}{\partial x^2} + \sin \pi x \text{ sinwt} = \frac{\partial^2 u}{\partial t^2}, \quad 0 < x < 1, \quad t > 0$$

with the boundary and initial conditions

$$u(0,t) = 0, \ u(1,t) = 0, t > 0$$
$$u(x,0) = 0, \ \frac{\partial u}{\partial t}|_{t=0} = 0, \ 0 < x < 1.$$

 $\mathbf{Q:4}$ (20 points) Solve the Laplace equation by separation of variables

$$\begin{split} \frac{\partial^2 u}{\partial x^2} &+ \frac{\partial^2 u}{\partial y^2} = 0, 0 < x < 1, 0 < y < 1, \\ u(x,0) &= 0, \quad u(0,y) = 10 \ y, \\ \frac{\partial u}{\partial x}|_{x=1} &= -1, \quad u(x,1) = 0. \end{split}$$

Page 8 of 15

Q:5 (20 points) Solve

$$\frac{\partial^2 u}{\partial r^2} \ + \ \frac{1}{r} \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial z^2} = 0, \quad 0 < r < 1, z > 0$$

subject to the following boundary conditions

$$u_r|_{r=1} + hu(1, z) = 0, z > 0,$$

 $u(r, 0) = 4, \quad 0 < r < 1.$

Page 10 of 15

Q:6 (20 points) Find the steady-state temperature in the sphere of radious C by solving

$$\begin{split} \frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{\cot\theta}{r^2} \frac{\partial u}{\partial \theta} &= 0, 0 < r < C, 0 < \theta < \pi \\ u(C, \theta) &= \cos(\theta), \quad 0 < \theta < \pi. \end{split}$$

Page 12 of 15 $\,$

Q:7 (10 points) Let
$$A = \begin{pmatrix} -1 & 2 & -2 \\ 2 & -1 & 2 \\ -2 & 2 & -1 \end{pmatrix}$$

(a) Find the eigenvalues and eigenvectors of ${\cal A}$

(b) Find an **orthogonal matrix P** that diagonalizes **A** and find the diagonal matrix $D = P^T A P$.