King Fahd University Of Petroleum & MineralsDepartment Of Mathematics And StatisticsSTAT460 : Time Series (161)First ExamWednesday October 30, 2016Name:

Question Number	Full Mark	Marks Obtained
One	8	
Two	12	
Three	22	
Four	9	
Five	24	
Total	75	

Question.1 (2+2+2+2=8-Points) Define the following:

(a) Strictly Stationary process $\{Y_t\}$:

(b) Weakly or Second-order Stationary process $\{Y_t\}$

(c) White noise Time Series:

(d) Random Walk time Series:

Question .2 (3+6+3=12-Points)

Let $\{Y_t\}$ be process given by: $Y_t = e_t + 3e_{t-1}$, for t = 0, 1, 2, ..., and e_t has a mean 0 and variance σ_e^2 .

(a) Find the mean and the variance of this time series.

(b) Find the autocovariance function.

(c) Find the autocorrelation function

Question.3 (4+4+4+10=22-Points)

Let $\{Y_t\}$ be a random walk with drift μ time series given by: $Y_t = \mu + Y_{t-1} + e_t$, where $Y_0 = 0$.

(a.) Show that $\{Y_t\}$ can be written as $Y_t = t\mu + \sum_{i=1}^t e_i$

(b.) Find the mean of this time series. Is it stationary? Why?

(c.) Find the the autocorrelation function of this time series.

(d.) Let $X_t = Y_t - Y_{t-1}$. Determine we ther X_t is stationary. Explain by considering the mean and the autocorrelation functions of X_t . Suppose that $Y_t = \mu + e_t + e_{t-1}$, where e_t is a white nose with mean 0 and variance σ_e^2 . Define $\bar{Y} = \frac{1}{n} \sum_{t=1}^n Y_t$.

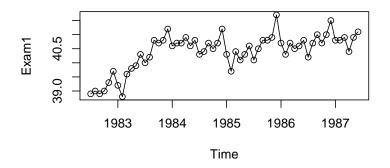
(a) Find $Var(\bar{Y})$

(b) If $Z_t = \mu + e_t$ and $Var(\bar{Z}) = \frac{\sigma_e^2}{n}$. What you would say about the $Var(\bar{Y})$ compared with $Var(\bar{Z})$.

Question 5. (3 X 8 = 24-Points)

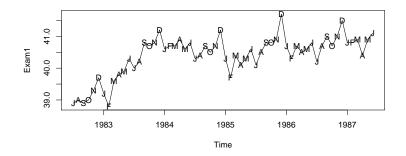
The following output and graphs are based on data example named as exam1data. Write comment after each plot.

(a) The plot of exam1data against time.



Comment:

(b) The plot of exam1data against time using separate symbols for various months.



Comment:

(c) The following is the output of fitting a quadratic trend using LSE. Call: lm(formula = exam1data ~ time(exam1data) + I(time(exam1data)^2)) Residuals: Min 1Q Median ЗQ Max -1.00603 -0.25431 -0.02267 0.22884 0.98358 Coefficients: Estimate Std. Error t value Pr(>|t|) -5.122e+05 1.155e+05 -4.433 4.28e-05 *** (Intercept) 5.159e+02 1.164e+02 4.431 4.31e-05 *** time(exam1data) I(time(exam1data)^2) -1.299e-01 2.933e-02 -4.428 4.35e-05 *** ____ Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 Residual standard error: 0.423 on 57 degrees of freedom Multiple R-squared: 0.5921, Adjusted R-squared: 0.5778 F-statistic: 41.37 on 2 and 57 DF, p-value: 7.97e-12 Comment:

(d) The run test is given below:
 > runs(rstudent(fitexam1))
 \$pvalue
 [1] 0.00012

\$observed.runs
[1] 16

\$expected.runs
[1] 30.96667

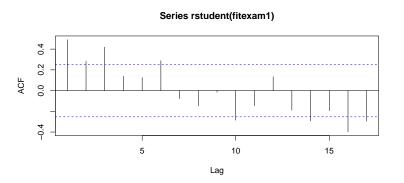
\$n1 [1] 31

\$n2 [1] 29

\$k [1] 0

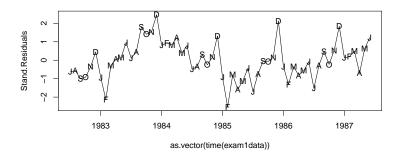
Comment:

(e) The plot of the sample autocorrelations for the standardized residuals .



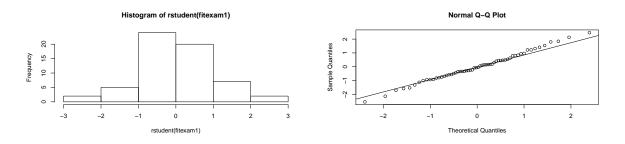
Comment:

(f) The plot of exam1data against time using separate symbols for various months.



Comment:

(g) The histogram and normal probability plots for the standardized residuals .



Comment:

(h) The Shapiro test.Shapiro-Wilk normality test

data: rstudent(fitexam1)
W = 0.99385, p-value = 0.9909

Comment: