King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics

MATH 302, Semester 161 (2016-2017)

EXAM II December 7, 2016

Allowed Time: 150 mins

Stuc	lent	$\sum_{i} N_{i}$	ame:
------	------	------------------	------

Student ID Number:

Section Number:

Instructor's Name:

Instructions:

- 1. Write neatly and legibly -- you may lose points for messy work.
- 2. Show all your work -- no points for answers without justification.
- 3. Programmable calculators and Mobiles are <u>not</u> allowed.
- 4. Make sure that you have 4 questions (5 pages + cover page + formula sheet).

Problem No.	Points	Maximum Points
1		25
2		25
3		30
4		20
Total:		100

Coordinator: Dr A. N. Duman

- **Q1.** Let $\mathbf{A} = 3z^2 \sin \varphi \, \hat{\mathbf{a}}_{\rho} + \rho \cos 2\varphi \, \hat{\mathbf{a}}_{\varphi} \rho z \hat{\mathbf{a}}_{z}$ at $P(2\sqrt{3}, \frac{\pi}{6}, 2)$
 - (a) Determine the vector component of \boldsymbol{A} that is tangential to the surface $\theta = \pi/3$. Give your answer in cylindrical coordinates.

[15 pts]

(b) Determine the angle that \mathbf{A} makes the tangent plane of the surface r = 4. [10 pts]

Q2.

- (a) Find the directional derivative $T = r^2 \sin \theta \cos \varphi$ in the direction $3\hat{a}_x 4\hat{a}_z$ at the point $P(1, \frac{\pi}{6}, \frac{\pi}{2})$. [10 pts]
- (b) Find $\nabla^2 V$ in cylindrical coordinates, where $V = \rho z \cos 2\varphi$, $\rho \neq 0$. [5 pts]
- (c) Express **∇**V in spherical coordinates. [10 pts]

Q3. Verify the divergence theorem for the function $E = 2\rho z^2 \hat{a}_{\rho} + \rho \cos^2 \varphi \hat{a}_z$, over region defined by $2 < \rho < 5, -1 < z < 1, 0 < \varphi < 2\pi$. [30 points]

- **Q4.** Let $\mathbf{E} = (20\rho \sin \varphi + 6z)\hat{\mathbf{a}}_{\rho} + 10\rho \cos \varphi \hat{\mathbf{a}}_{\varphi} + 6\rho \hat{\mathbf{a}}_{z}$ be the electric field on a certain region of space.
 - (a) Verify that \mathbf{E} is a conservative field.

[5 points]

(b) Find the electric potential function V.

[10 points]

(c) Given two points A(1,0,1) and $B(4,\pi/6,0)$ inside this region, find the electric potential at A, i.e. V(A), given that V(B) = 5. [5 points]

Formulae in cylindrical and spherical coordinate systems

Differential of displacement

Cylindrical: $d\mathbf{l} = d\rho \, \widehat{\mathbf{a}_{\rho}} + \rho d\phi \, \widehat{\mathbf{a}_{\phi}} + dz \, \widehat{\mathbf{a}_{z}}$

Spherical: $d\mathbf{l} = dr \, \widehat{\mathbf{a}_r} + r d\theta \, \widehat{\mathbf{a}_\theta} + r \sin\theta \, d\phi \, \widehat{\mathbf{a}_\phi}$

Gradient of a scalar field, ∇ V

Cylindrical: $\nabla V = \frac{\partial V}{\partial \rho} \widehat{a_{\rho}} + \frac{1}{\rho} \frac{\partial V}{\partial \phi} \widehat{a_{\phi}} + \frac{\partial V}{\partial z} \widehat{a_{z}}$

Spherical: $\nabla V = \frac{\partial V}{\partial r} \widehat{a_r} + \frac{1}{r} \frac{\partial V}{\partial \theta} \widehat{a_\theta} + \frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} \widehat{a_\phi}$

Divergence of a vector field, $\nabla \cdot \mathbf{G}$

Cylindrical: $\nabla \cdot \mathbf{G} = \frac{1}{\rho} \frac{\partial (\rho G_{\rho})}{\partial \rho} + \frac{1}{\rho} \frac{\partial (G_{\phi})}{\partial \phi} + \frac{\partial (G_{z})}{\partial z}$

Spherical: $\nabla \cdot \mathbf{G} = \frac{1}{r^2} \frac{\partial (r^2 G_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (\sin \theta G_\theta)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial (G_\phi)}{\partial \phi}$

Relationship between Cartesian, Cylindrical and Spherical Coordinates

$$\begin{pmatrix} A_{\rho} \\ A_{\varphi} \\ A_{z} \end{pmatrix} = \begin{pmatrix} \cos \varphi & \sin \varphi & 0 \\ -\sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} A_{\chi} \\ A_{y} \\ A_{z} \end{pmatrix}$$

$$\begin{pmatrix} A_r \\ A_\theta \\ A_\varphi \end{pmatrix} = \begin{pmatrix} \sin\theta\cos\varphi & \sin\theta\sin\varphi & \cos\theta \\ \cos\theta\cos\varphi & \cos\theta\sin\varphi & -\sin\theta \\ -\sin\varphi & \cos\varphi & 0 \end{pmatrix} \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix}$$