King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics Math 280 Final Exam, First Semester (161), 2016 Net Time Allowed: 180 minutes

Name:-

TD		
- 113	•	
- 117		

-Section:-----

-----Serial:--

Q#	Marks	Maximum Marks
1		5
2		15
3		5
4		6
5		10
6		15
7		10
8		15
9		10
10		10
11		10
12		10
13		10
Total		130

1. Write clearly.

- 2. Show all your steps.
- 3. No credit will be given to wrong steps.
- 4. Do not do messy work.
- 5. Calculators and mobile phones are NOT allowed in this exam.
- 6. Turn off your mobile.

1. (5 points) If A and B are row equivalent matrices and A is invertible then B is invertible.

- 2. (15 points) Consider the vector space $M_{2\times 2}$ of real 2×2 matrices. Let V_1 be the set of matrices of the form $\begin{bmatrix} a & b \\ -a & c \end{bmatrix}$ and V_2 be the set of matrices of the form $\begin{bmatrix} p & -p \\ q & r \end{bmatrix}$.
 - (a) Prove $V_1 \cap V_2$ are subspace of $M_{2 \times 2}$.
 - (b) Find bases for $V_1 \cap V_2$. Give the dimensions of these spaces.

3. (5 points) Show that the following transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ is not linear

T(x, y, z) = (xy, z)

4. (6 points) Find the 1–, 2–, and ∞ -norms of	$\left[\begin{array}{c} 1+i\\ 1-i\\ 1\\ 4i \end{array}\right]$
---	--

5. (10 points) Show that $\operatorname{Trace}(A^T B)^2 \leq \operatorname{Trace}(A^T A) \operatorname{Trace}(B^T B)$, for all $A, B \in \mathbb{R}^{m \times n}$

6. (15 points) Given the matrix $A = \begin{bmatrix} 0 & -2 & 1 \\ 2 & 4 & -1 \\ 2 & 1 & 2 \end{bmatrix}$

- (a) Diagonalize A.
- (b) Use the result obtained in (a) state how to find A^n .
- (c) State how to find $\exp(A)$

7. A matrix A is said to be nilpotent if $A^k = 0$ for some integer k. Prove that if A is nilpotent then 0 is the only eigenvalue of A.

8. (15 points) Let
$$A = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$$

- (a) Find orthonormal basis for the column space of the matrix A.
- (b) Find the QR-factorization of A by using part(a).

9. (10 points) For the space P_3 of polynomials, determine the change of basis matrix from \mathcal{B}_1 to \mathcal{B}_2 , where

$$\mathcal{B}_1 = \{1, x, x^2\}$$
 and $\mathcal{B}_2 = \{1, 1 + x, 1 + x + x^2\},\$

and then find the coordinates of $q(x) = 3 + 2x + 4x^2$ relative to \mathcal{B}_2 .

10. Using the trace inner product, determine the angle between the identity matrix $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

11. If $\{u_1, u_2, \cdots, u_n\}$ is an orthonormal basis for an inner-product space V, show that

$$\langle x, y \rangle = \sum_{i=1}^{n} \langle x, u_i \rangle \langle u_i, y \rangle$$

holds for every $x, y \in V$.

12. (10 points) Given the quadratic equation

$$x^2 + 4xy + y^2 + 3x + y - 1 = 0$$

find a change of cordinates so that the resulting equation represents a conic in standard position.

13. (10 points) The function $f(x, y) = (x^2 - 2x) \cos y$ has a critical point at $(1, \pi)$. Determine wether the given stationary point is local maximum, minimum or saddle point.