King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics Math 280 Major Exam II, Semester I, 2016-2017 Net Time Allowed: 120 minutes

Name:		
ID:	-Section:	-Serial:

Q#	Marks	Maximum Marks
1		7
2		8
3		10
4		10
5		10
6		15
7		10
8		15
9		15
Total		100

- 1. Write clearly.
- 2. Show all your steps.
- 3. No credit will be given to wrong steps.
- 4. Do not do messy work.
- 5. Calculators and mobile phones are NOT allowed in this exam.
- 6. Turn off your mobile.

1. Let V be the set of all ordered pairs of real numbers. Define scalar multiplication and addition on V by

$$\alpha(x_1, x_2) = (\alpha x_1, \alpha x_2)$$
$$(x_1, x_2) \oplus (y_1, y_2) = (x_1 + y_1, 0)$$

Is V a vector space with these operations? Justify your answer.

2. Let S be a subset of the vector space $\mathbb{R}^{n \times n}$, where $S = \{A : A \text{ is } n \times n \text{ matrix and } \operatorname{Trace}(A) = 0\}$. Is S a subspace of $\mathbb{R}^{n \times n}$? Explain?

3. Determine whether or not the following sets span the same subspace:

$$\mathcal{A} = \left\{ \begin{bmatrix} 1\\2\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\4\\1\\3 \end{bmatrix}, \begin{bmatrix} 3\\6\\1\\4 \end{bmatrix} \right\}, \quad \mathcal{B} = \left\{ \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix} \right\}$$

4. Show that if A is similar to B, then tr(A) = tr(B).

5. Do the following set of matrices form a basis for $\mathbb{R}^{2\times 2}$

$$\left\{ \left(\begin{array}{rrr} 1 & 0 \\ 0 & 0 \end{array}\right), \left(\begin{array}{rrr} 1 & 1 \\ 0 & 0 \end{array}\right), \left(\begin{array}{rrr} 1 & 1 \\ 1 & 0 \end{array}\right), \left(\begin{array}{rrr} 1 & 1 \\ 1 & 1 \end{array}\right) \right\}$$

6. Let
$$A = \begin{bmatrix} 1 & 3 & -4 \\ 2 & -1 & -1 \\ -1 & -3 & 4 \end{bmatrix}$$

- (a) Find a basis for the row space of A. What is the dimension of the row space?
- (b) Find a basis for the column space of A. What is the rank of A?
- (c) Find a basis for the null space of A. What is the nullity of A?

7. Let *E* and *F* be two ordered bases for \mathbb{R}^2 , where $E = \left\{ v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 5 \end{pmatrix} \right\}$ and $F = \left\{ v_1 = \begin{pmatrix} 1 \\ -3 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$. Find the transition matrix from *E* to *F* and use it to find the coordinates of $x = 2v_1 - 3v_2$. 8. Let L be the operator on P_3 defined by

L(p(x)) = xp'(x) + p''(x)

- (a) Find the matrix A representing L with respect to $[1, x, x^2]$.
- (b) Find the matrix B representing L with respect to $[1,x,1+x^2].$
- (c) Find the matrix S such that $B = S^{-1}AS$.
- (d) If $p(x) = a_0 + a_1 x + a_2(1 + x^2)$. calculate $L^n(p(x))$.

9. Let T be a mapping from \mathbb{R}^3 onto \mathbb{R}^3 defined by

$$T\left(\begin{array}{c} x_1\\ x_2\\ x_3 \end{array}\right) = \left(\begin{array}{c} x_1 + x_2\\ x_2 - 2x_3\\ x_1 + 2x_3 \end{array}\right)$$

- (a) Show that T is a linear transformation.
- (b) Find the kernel of T.
- (c) Find the image of the subspace $S = \{(a, -a, a)^T : a \text{ is a real number}\}.$