Name: ID #: Serial #:

- 1. Find the eigenvalues and corresponding eigenvectors of the matrix $A = \begin{bmatrix} 0 & 2 \\ -18 & 0 \end{bmatrix}$. Sol.
 - Eigenvalues: $|A \lambda I| = \lambda^2 + 36$, so the eigenvalues are $\lambda_1 = 6i$ and $\lambda_2 = -6i$.
 - Eigenvectors: $A \lambda_1 I = \begin{bmatrix} -6i & 2 \\ -18 & -6i \end{bmatrix} \longrightarrow \begin{bmatrix} -3i & 1 \\ 0 & 0 \end{bmatrix}$. Hence an eigenvector for λ_1 is $v_1 = (1, 3i)$. Since $\lambda_2 = \overline{\lambda_1}$ (the conjugate of λ_1), an eigenvector for λ_2 is $v_2 = \overline{v_1} = (1, -3i)$.
- 2. Is the matrix $A = \begin{bmatrix} 3 & -2 & 0 \\ 0 & 1 & 0 \\ -4 & 4 & 1 \end{bmatrix}$ diagonalizable? If it is, find a diagonalizing matrix P and diagonal matrix D such that $A = PDP^{-1}$.

 Sol.
 - Eigenvalues: $|A \lambda I| = \begin{vmatrix} 3 \lambda & -2 & 0 \\ 0 & 1 \lambda & 0 \\ -4 & 4 & 1 \lambda \end{vmatrix} = (1 \lambda)(3 \lambda)(1 \lambda)$. So the eigenvalues are $\lambda_1 = 1$ (multiplicity 2) and $\lambda_2 = 3$.
 - Eigenvectors (x, y, z): $A \lambda_1 I = \begin{bmatrix} 2 & -2 & 0 \\ 0 & 0 & 0 \\ -4 & 4 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, with 2 free variables y, z. Since multiplicity of λ_1 is also 2, the matrix A is diagonalizable.
 - For λ_1 , eigenvector (x, y, z) can be written (y, y, z) = y(1, 1, 0) + z(0, 0, 1). Hence a basis for the eigenspace of λ_1 is $\{(1, 1, 0), (0, 0, 1)\}$.
 - For λ_2 , $A \lambda_2 I = \begin{bmatrix} 0 & -2 & 0 \\ 0 & -2 & 0 \\ -4 & 4 & -2 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ -2 & 2 & -1 \end{bmatrix}$, with 1 free variable z. In this case, eigenvector (x,y,z) can be written (-z/2,0,z). A basis for the eigenspace of λ_2 is $\{(-1,0,2)\}$.
 - The required matrices are: $P = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 2 \end{bmatrix}$ and $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$.