KFUPM, DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH 232: FINAL EXAM, TERM 161, JANUARY 14, 2017

07:00–10:00 pm

Name :

ID :

Exercise	Points
1	: 6
2	: 8
3	: 6
4	: 8
5	: 8
6	: 6
7	: 6
8	: 8
9	: 6
10	: 6
11	: 8
12	: 6
13	: 6
14	: 6
15	: 6
Total	: 100

Exercise 1 (6 pts).

(1) Find the following intersection

$$I = \bigcap_{n=1}^{\infty} [-\frac{1}{n}, 2 + \frac{1}{n}).$$

(2) Find the following union

$$J = \bigcup_{n=2}^{\infty} [1 + \frac{1}{n}, n].$$

Exercise 2 (8 pts).

- (1) Using Mathematical Induction, show that 7 divides $3^{2n+2} 2^{n+1}$, for each integer $n \ge 0$.
- (2) Using techniques of congruences and the fact that $9 \equiv 2 \pmod{7}$, show that 7 divides $3^{2n+2} 2^{n+1}$, for each integer $n \ge 0$.

Exercise 3 (6 pts). Let E be a set and X, Y be a partition of E. Consider the function

$$f: \mathcal{P}(E) \longrightarrow \mathcal{P}(X) \times \mathcal{P}(Y)$$
$$A \longmapsto (A \cap X, A \cap Y)$$

Show that f is a bijection.

Exercise 4 (8 pts). Find all integers x, y such that

17x + 11y = 5.

Exercise 5 (8 pts). Show that the function $f : \mathbb{R} \setminus \{14\} \longrightarrow \mathbb{R} \setminus \{7\}$ defined by $f(x) = \frac{7x - 1}{x - 14}$ is a bijection and find its inverse function f^{-1} .

Exercise 6 (6 pts). Find the number of integers between 1 and 500 that are neither multiple of 11 nor multiple of 13.

Exercise 7 (6 pts). Write the prime factorization of 360, and then evaluate $\sigma(360)$ (the sum of all divisors of 360).

Is 360 a perfect number? why?

Exercise 8 (8 pts).

- (1) Show that if A is a finite set, then $|\mathcal{P}(A)| < |\mathbb{N}|$.
- (2) Show that if A is an infinite set, then $|\mathbb{N}| \leq |A|$.
- (3) Show that there is no set A such that $\mathcal{P}(A)$ is denumerable.

Exercise 9 (6 pts). Use Schröder-Bernstein Theorem to show the following facts: For every $x \in \mathbb{R}$ and every $q \in \mathbb{Q}$, we have

 $|\mathbb{R} \setminus \{x\} \mid = |\mathbb{R}|$ and $|\mathbb{Q} \setminus \{q\} \mid = |\mathbb{Q}|$.

Exercise 10 (6 pts). Let (G, \star) be a group.

- (1) Let a and b be two elements of G. Show that that if a and b commute, then so are a^{-1} and a^{-1} .
- (2) Show that G is Abelian if and only if $(a \star b)^{-1} = a^{-1} \star b^{-1}$, for all $a, b \in G$.

Exercise 11 (8 pts). Let * be the binary operation defined on \mathbb{Z} by :

$$a \ast b = a + b - 14.$$

- (1) Show that $(\mathbb{Z}, *)$ is an Abelian group.
- (2) Show that $(\mathbb{Z}, *)$ and $(\mathbb{Z}, +)$ are isomorphic.

Exercise 12 (6 pts). Let (G, \star) be a group and $a \in G$. Show that the $H = \{g \in G : a \star g = g \star a\}$

is a subgroup of G.

Exercise 13 (6 pts). Let H be a subgroup of a group G such that |G| = 6 and $\{e\} \subset H \subset G$. What are the possible values of |H|.

For each of these values give the number of the left-cosets modulo H.

Exercise 14 (6 pts). Use the continuum hypothesis to show that $|\mathbb{R} \setminus \mathbb{Q}| = |\mathbb{R}|$.

Exercise 15 (6 pts). Give an example of a finite nonabelian group and an example of an infinite nonabelian group.