KFUPM, DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH 232: EXAM II, T 161, DECEMBER 18, 2016

17:30–19:30 PM

Name :

ID :

Exercise 1 (10 pts). Let φ be the positive root of the quadratic equation

$$x^2 - x - 1 = 0.$$

Let $(F_n, n \in \mathbb{N})$ be the sequence defined recursively by $F_0 = 1, F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$, for n > 1.

Show that $F_n \leq \varphi^n$, for each integer $n \geq 0$.

Exercise 2 (10 pts). Let $(u_n, n \in \mathbb{N})$ be the sequence defined recursively by $u_0 = 0, u_1 = 1$ $u_{n+1} = u_n + 2u_{n-1}$, for $n \ge 0$.

- (1) Show that $u_n \in \mathbb{N}$, for each $n \in \mathbb{N}$.
- (2) Show that $u_n = \frac{1}{3}(2^n (-1)^n)$, for each $n \in \mathbb{N}$.

Exercise 3 (10 pts). Let $(u_n, n \in \mathbb{N})$ be the sequence defined by $u_0 = 1$, $u_1 = 2$ and $u_{n+2} = 5u_{n+1} - 6u_n$, for $n \ge 0$.

- (1) Find u_2, u_3, u_4 .
- (2) Find a formula for u_n .

Exercise 4 (10 pts).

- (1) Show that the interval [0, 1] equipped with the usual order is not well ordered.
- (2) Show that the set $\{2^n \mid n \in \mathbb{N}\}$ equipped with the usual order is well ordered.

Exercise 5 (15 pts). Let ~ be the relation defined on \mathbb{Z} by; $x \sim y \iff x^2 \equiv y^2 \pmod{5}$

- (1) Show that \sim is an equivalence relation.
- (2) Find $\overline{0}, \overline{1}, \overline{2}$.
- (3) Find the cardinality of the quotient set \mathbb{Z}/\sim .

•

Exercise 6 (10 pts). Let R be the binary relation defined on \mathbb{R}^2 by: (x, y)R(x', y') if and only if $|x' - x| \le y' - y$.

Show that R is an ordering on \mathbb{R}^2 (reflexive, antisymmetric and transitive).

Exercise 7 (15 pts).

- (1) Give the table of multiplication on \mathbb{Z}_8 .
- (2) Deduce from (1) the solution of the congruence equation:

$$2x \equiv 4 \pmod{8},$$

where the unknown x is in \mathbb{Z} .

(3) Deduce from (1) the solution of the congruence equation:

$$x^2 \equiv 4 \pmod{8},$$

where the unknown x is in \mathbb{Z} .

9