KFUPM, DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH 232: EXAM I, SEMESTER (161), NOVEMBER 05, 2016

10:00–12:00 am

Name :

ID :

Exercise 1 (12 pts).

- (1) Explain why $9 \equiv 2 \pmod{7}$ and $4 \equiv -3 \pmod{7}$.
- (2) Show that for each integer $n \ge 0$, $3^{2n+1} + 2^{n+2}$ is divisible by 7.
- (3) If today is Saturday, then what day will be after $(3^{2017} + 2^{1010} + 2)$ days?

Exercise 2 (10 pts). Let $x \in \mathbb{R}$. Show that:

(1) If
$$\left|\frac{\sin x}{x^2 - x + 1}\right| > 2$$
, then $e^x > 2016$.
(2) If $|x - 1| < 2017$, then $\frac{e^{-x^2}}{x^2 - 2x + 5/4} \le 4$.

Exercise 3 (12 pts). Let $a_1, a_2, b_1, b_2 \in \mathbb{R}$.

(i) Show that if $a_1 \ge a_2$ and $b_1 \ge b_2$, then

$$a_1b_1 + a_2b_2 \ge a_1b_2 + a_2b_1.$$

(*ii*) Show that for all real numbers α, β , we have

$$\alpha^2 + \beta^2 \ge 2\alpha\beta.$$

(*iii*) Use the result of (*i*) to show that for all real numbers α, β , we have

$$\alpha^2 + \beta^2 \ge 2\alpha\beta.$$

Exercise 4 (8 pts). Show that if n is not divisible by 3, then $n^2 + 2$ is divisible by 3.

Exercise 5 (12 pts). Let $a \in \mathbb{Z}$. Show that if a is a perfect square(i.e., there is $a \in \mathbb{Z}$, such that $a = b^2$), then $a \not\equiv 2 \pmod{4}$.

Exercise 6 (8 pts). Let P_1, P_2, \ldots, P_n and Q be statements. Show that: $[(P_1 \lor P_2, \ldots \lor P_n) \longrightarrow Q] \equiv [(P_1 \longrightarrow Q) \land (P_2 \longrightarrow Q) \land \ldots \land (P_n \longrightarrow Q)].$ **Exercise 7** (38 pts). For P, Q statements, we denote by $P \oplus Q$ the statement $(P \lor Q) \land \overline{P \land Q}$. Show that the following properties hold:

- (1) $P \oplus Q \equiv (P \wedge \overline{Q}) \lor (Q \wedge \overline{P}).$
- (2) $\overline{P \oplus Q} \equiv (P \longleftrightarrow Q).$
- (3) $P \oplus Q \equiv \overline{P} \oplus \overline{Q}$.
- (4) If C is a contradiction, then $P \oplus C \equiv P$ and $P \oplus P \equiv C$.
- (5) $(P \oplus Q) \oplus R \equiv P \oplus (Q \oplus R).$
- (6) $(P \oplus Q) \land R \equiv (P \land R) \oplus (Q \land R).$

9

Use the results of the previous questions (5) and (6) to show that, if A, B are subsets of a universal set U, then we have:

- (7) $(A\Delta B)\Delta C = A\Delta(B\Delta C).$
- (8) $(A\Delta B) \cap C = (A \cap C)\Delta(B \cap C).$