Student ID:

Student Name:

Serial Number:

Math 201, Section 12 Fall 2016, Term 161 Instructions: Show Your Work! Quiz 6 Version A

1. (5 pts) Use a double integral to find the region enclosed by both of the cardioids

 $r = 1 + \cos(x)$, and $r = 1 - \cos(x)$.

2. (5 pts) Use polar coordinates to evaluate

$$\int_{1}^{2} \int_{0}^{\sqrt{2x-x^{2}}} \sqrt{x^{2}+y^{2}} dy dx.$$

3. (5 pts) Use a triple integral to find the volume of the solid enclosed by the paraboloids $y = x^2 + z^2$ and $y = 8 - x^2 - z^2$.

Student ID:

Student Name:

Serial Number:

Math 201, Section 15 Fall 2016, Term 161 Instructions: Show Your Work! Quiz 6 Version B

1. (5 pts) Use a double integral to find the region enclosed by both of the cardioids

 $r = 1 + \cos(x)$, and $r = 1 - \cos(x)$.

2. (5 pts) Use polar coordinates to evaluate

$$\int_0^1 \int_0^{\sqrt{2x-x^2}} \sqrt{x^2 + y^2} dy dx.$$

3. (5 pts) Use a triple integral to find the volume of the solid enclosed by the cylinders $x^2 + z^2 = 4$ and the planes y = -1 and y + z = 4.