Student ID:

Student Name:

Serial Number:

Math 201, Section 12 Fall 2016, Term 161 Instructions: Show Your Work!

1. (5 pts) Suppose that f is a differentiable function of x and y and

$$g(s,t) = f(e^s + \sin t, e^s + \cos t).$$

Use the table of values to calculate $g_s(0,0)$ and $g_t(0,0)$.

	f	g	f_x	f_y
(0, 0)	3	6	4	8
(1, 2)	6	3	2	5

2. (5 pts) Show that every normal line to the sphere

 $x^2 + y^2 + z^2 = 9$

passes through the center of the sphere.

Quiz 4 Version A

Student ID:

Student Name:

Serial Number:

Math 201, Section 15 Fall 2016, Term 161 Instructions: Show Your Work!

1. (5 pts) Suppose that f is a differentiable function of x and y and

$$g(s,t) = f(2s - t, t^2 - 4s).$$

Use the table of values to calculate $g_s(1,2)$ and $g_t(1,2)$.

	f	g	f_x	f_y
(0,0)	3	6	4	8
(1,2)	6	3	2	5

2. (5 pts) Show that the sum of the x-,y-, and z-intercepts of any tangent plane to the surface

$$\sqrt{x} + \sqrt{y} + \sqrt{z} = \sqrt{k}$$

is a constant.

Quiz 4 Version B