

Exercise 1: (5 points)

Determine the volume of the solid obtained by rotating the region bounded by y = x and $y = x^2 - 2x$ about the line y = 4

Exercise 2: (5 points)

Determine the volume of the solid obtained by rotating the region bounded by y = x - 1 and $y = 2\sqrt{x - 1}$ about the line x = -1

Exercise 3: (5 points)

Determine the volume of the solid obtained by rotating the region bounded by $x = y^2$ and x = y about the line y = 1

Exercise 4: (5 points)

The base of a solid is a semi-circle of radius 1. Parallel cross-sections perpondicular to the base are squares with two of their vertices on the semi-circle. Find the volume of the solid.

$$V = \int_{0}^{4} \pi (y+1-(-1))^{2} - \pi (\frac{1}{4}y^{2}+1-(-1))^{2} dy$$

$$= \int_{0}^{4} \pi (y+2)^{2} - \pi (\frac{1}{4}y^{2}+2)^{2} dy$$

$$= \pi \int_{0}^{4} 4y - \frac{y^{4}}{16} dy$$

$$= \pi \left[2y^{2} - \frac{1}{80} y^{5} \right]_{0}^{4} = \frac{96}{5} \pi$$

$$= xerwise 3$$

$$V = \int_{0}^{4} \pi (1-x)^{2} - \pi (1-\sqrt{x})^{2} dx$$

$$= \pi \int_{0}^{4} 1 - 2x + x^{2} - 1 + 2\sqrt{x} - x dx$$

$$= \pi \int_{0}^{4} x^{2} - \frac{3}{2}x^{4} + \frac{4}{3}x^{2} \Big|_{0}^{4} = \frac{\pi}{6}$$

