- 1. The limit $\lim_{n\to\infty} \sum_{i=1}^n \frac{\pi}{n} e^{-i\frac{\pi}{n}} \sin\left(i\frac{\pi}{n}\right)$ is equal to
 - (a) $\int_0^{\pi} e^{-x} \sin x \, dx$.
 - (b) $\int_0^{\pi} e^x \sin x \, dx.$
 - (c) $\int_{-\pi}^{0} e^x \sin x \, dx.$
 - (d) $\int_0^1 e^{-x} \sin x \, dx$.
 - (e) $\int_0^1 e^x \sin x \, dx.$

- 2. If $\int (\ln x)^2 dx = x(\ln x)^2 + 2x(k \ln x) + C$, where k and C are constants, then k=
 - (a) 1
 - (b) 2
 - (c) -1
 - (d) -2
 - (e) $\frac{1}{2}$

- 3. If $f(x) = \int_{\sqrt{x}}^{1} \cos(t^2) dt$, then f'(x) =
 - (a) $\frac{-\cos x}{2\sqrt{x}}$
 - (b) $\frac{-\cos x}{2x}$
 - (c) $\frac{-\sqrt{x}\cos x}{2}$
 - (d) $-\frac{\cos(x\sqrt{x})}{2\sqrt{x}}$
 - (e) $\frac{-\cos x}{x}$

4. If the velocity of a particle moving along a line is $v(t) = |t^2 - 1|$ in m/s, then the total distance travelled by the particle during the time interval [0, 2] is

(a)
$$-\int_0^1 (t^2 - 1) dt + \int_1^2 (t^2 - 1) dt$$

(b)
$$\int_0^1 (t^2 - 1)dt + \int_1^2 (t^2 - 1) dt$$

(c)
$$\int_0^2 (t^2 - 1) dt$$

(d)
$$\int_0^1 (t^2 - 1) dt - \int_1^2 (t^2 - 1) dt$$

(e)
$$-\int_0^1 (t^2 - 1) dt - \int_1^2 (t^2 - 1) dt$$

$$5. \qquad \int_3^7 \frac{x}{x^2 - 4} \, dx =$$

- (a) ln 3
- (b) 3 ln 3
- (c) $\ln \frac{1}{3}$
- (d) $3 \ln \frac{1}{3}$
- (e) $\frac{1}{2} \ln 3$

6. If
$$F(x) = \int_1^x \frac{\sin t}{t} dt$$
, $x > 0$,
then $\int_1^5 \frac{\sin 2t}{t} dt$ is

- (a) F(10) F(2)
- (b) F(10) F(1)
- (c) F(5) F(1)
- (d) 2F(5) F(1)
- (e) 2F(10) 2F(1)

7. Find the area of the region bounded by the curves

$$y = \sin x$$
 and $y = \cos x$ over $[0, \pi]$.

- (a) $2\sqrt{2}$
- (b) $\sqrt{2} + 3$
- (c) $2 \sqrt{2}$
- (d) $3 + 2\sqrt{2}$
- (e) $\sqrt{2} + 1$

8. Find the volume of the solid obtained by rotating the region bounded by the curves

$$y = 1 - x^2$$
, $x = 0$, $y = 0$, $x \ge 0$,

about the line x = 1.

- (a) $\frac{5\pi}{6}$
- (b) $\frac{3\pi}{2}$
- (c) $\frac{4\pi}{3}$
- (d) $\frac{6\pi}{5}$
- (e) $\frac{3\pi}{5}$

- 9. The average value of $f(x) = \ln x$ over the interval $[e, e^2]$ is
 - (a) $\frac{e}{e-1}$
 - (b) $\frac{e}{e+2}$
 - (c) e+1
 - (d) e 1
 - (e) $e^2 1$

- $10. \qquad \int x^3 \sqrt{x^2 1} \, dx =$
 - (a) $\frac{1}{3}\sqrt{(x^2-1)^3} + \frac{1}{5}\sqrt{(x^2-1)^5} + C$
 - (b) $\frac{1}{2}x\sqrt{x^2-1} + \frac{1}{3}x\sqrt{x^2-1} + C$
 - (c) $\frac{1}{2}\sqrt{x^2-1} + \frac{1}{5}x^2\sqrt{x^2-1} + C$
 - (d) $\frac{1}{2}x\sqrt{x^2-1} + \frac{1}{5}x^2\sqrt{x^2-1} + C$
 - (e) $\sqrt{(x^2-1)^5} + \sqrt{(x^2-1)^7} + C$

11.
$$\int_{\ln 3}^{\ln 4} \frac{e^x}{e^{2x} - 3e^x + 2} \, dx =$$

- (a) $2 \ln 2 \ln 3$
- (b) $3 \ln 2 \ln 5$
- (c) $4 \ln 2 \ln 7$
- (d) $5 \ln 2 \ln 3$
- (e) $3 \ln + \ln 5$

12. The area between the curves

$$y = \frac{1}{x^2 + 1}$$
 and $y = \frac{-1}{x^2 + 1}$

is equal to

- (a) 2π
- (b) $\frac{\pi}{2}$
- (c) $\frac{\pi}{4}$
- (d) π^2
- (e) ∞

13.
$$\int_{2}^{6} (x-1)\sqrt{x-2} \, dx =$$

- (a) $\frac{272}{15}$
- (b) $\frac{28}{25}$
- (c) $\frac{24}{11}$
- (d) $\frac{64}{25}$
- (e) $\frac{128}{15}$

14. The arc length of the curve

$$s(t) = 3 - \cosh t, \qquad -1 \le t \le 1,$$

is equal to

- (a) $e e^{-1}$
- (b) $\frac{e + e^{-1}}{2}$
- (c) 0
- (d) 6
- (e) 5e

15. The sequence $\left\{\frac{e^n+n}{e^n-n}\right\}_{n\geq 1}$ is

- (a) convergent and its limit is 1.
- (b) convergent and its limit is 0.
- (c) convergent and its limit is -1.
- (d) divergent and its limit is ∞ .
- (e) divergent and its limit is $-\infty$.

16. The series $\sum_{n=1}^{\infty} \frac{e^{n+1} - e^n}{e^{2n+1}}$ is

- (a) convergent and its sum is $\frac{1}{e}$.
- (b) convergent and its sum is e.
- (c) convergent and its sum is 0.
- (d) convergent and its sum is $\frac{1}{e^2}$.
- (e) divergent

- 17. What is the minimum number of **Terms** needed to estimate the sum $\sum_{n=1}^{\infty} \frac{1}{n^3}$ with an error of at most 0.0002?
 - (a) 50 terms
 - (b) 101 terms
 - (c) 26 terms
 - (d) 1001 terms
 - (e) 22 terms

- 18. Which one of the following statements is TRUE for the series $\sum_{n=1}^{\infty} \frac{1+\ln n}{n}$ and $f(x) = \frac{1+\ln x}{x}$?
 - (a) The series diverges by the Integral Test.
 - (b) The series converges by the Integral Test.
 - (c) The Integral Test is not applicable because f is increasing.
 - (d) The Integral Test is not applicable because f is negative.
 - (e) The Integral Test is not applicable because f is discontinuous.

19. The series $\sum_{n=1}^{\infty} \frac{\tan^{-1} n}{n\sqrt{n}}$ is convergent by the Comparison Test. The comparison series used is

(a)
$$\sum_{n=1}^{\infty} \frac{\pi}{2n\sqrt{n}}$$

(b)
$$\sum_{n=1}^{\infty} \frac{\pi}{4n\sqrt{n}}$$

(c)
$$\frac{\pi}{2} \sum_{n=1}^{\infty} \frac{1}{n^2}$$

(d)
$$\sum_{n=1}^{\infty} \frac{\pi}{4n^3}$$

(e)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$

20.
$$\sum_{n=1}^{\infty} n^{-\pi}$$
 is

- (a) a convergent, p series.
- (b) a divergent, p series.
- (c) a convergent, geometric series.
- (d) a divergent, geometric series.
- (e) a convergent, alternating series.

21. The series

$$\frac{\pi}{2} \sum_{n=0}^{\infty} \frac{(-\pi^2)^n}{4^n (2n+1)!} =$$

(Hint: Use the Maclaurin series for $\sin x$).

- (a) 1
- (b) -1
- (c) $\frac{-\pi}{2}$
- (d) $\frac{\pi}{2}$
- (e) $\frac{\pi}{4}$

22. The series
$$\sum_{n=0}^{\infty} \frac{\cos n \pi}{n-\pi}$$
 is

- (a) convergent.
- (b) divergent by the Test for Divergence.
- (c) absolutely convergent.
- (d) divergent by the Ratio Test.
- (e) divergent by the Alternating Series Test.

23. The series
$$\sum_{k=1}^{\infty} [\ln(2k^4+1) - \ln(k^4+1)]$$
 is

- (a) divergent by the Test for Divergence.
- (b) convergent.
- (c) absolutely convergent.
- (d) convergent by the Comparison Test.
- (e) convergent by the Alternating Series Test.

24. The series
$$\sum_{n=1}^{\infty} \left(\frac{1-n}{1+2n} \right)^n$$
 is

- (a) absolutely convergent.
- (b) conditionally convergent.
- (c) divergent by the Integral Test.
- (d) divergent by the Comparison Test.
- (e) divergent by the Root Test.

25. The interval of convergence of the series $\sum_{n=0}^{\infty} \frac{(x-1)^n}{n^3+1}$ is

- (a) [0, 2].
- (b) [0,2).
- (c) (0,2].
- (d) (0,2).
- (e) [1, 2].

26. If $f^{(n)}(1) = \frac{n!}{2^n}$, n = 0, 1, ..., then f(x) =

- (a) $\sum_{n=0}^{\infty} 2^{-n} (x-1)^n$
- (b) $\sum_{n=0}^{\infty} 2^n n! (x-1)^n$
- (c) $\sum_{n=0}^{\infty} \left(\frac{2}{x-1} \right)^n$
- (d) $\sum_{n=0}^{\infty} \left(\frac{x}{2}\right)^n$
- (e) $\sum_{n=0}^{\infty} \left(\frac{2}{x}\right)^n$

27. The value of $\int_0^1 e^{x^5} dx$ is equal to

(a)
$$\sum_{n=0}^{\infty} \frac{1}{(5n+1) n!}$$

(b)
$$\sum_{n=0}^{\infty} \frac{5}{(5n+1) n!}$$

(c)
$$\sum_{n=0}^{\infty} \frac{25}{(5n+1) n!}$$

(d)
$$\sum_{n=0}^{\infty} \frac{1}{(5n+1)^6}$$

(e)
$$\sum_{n=0}^{\infty} \frac{1}{(5n+1)!}$$

- 28. If $e^{2x} \cos 3x = a + bx + cx^2 + ...$, for all x, then a + b + 2c =
 - (a) -2
 - (b) -1
 - (c) -3
 - (d) -4
 - (e) -5