King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics Math 101(22&31) Class Test 2 Fall 2016(161)

ID#:_____ NAME:_____

(1) Sketch the graph of a function f that satisfies all of the given conditions:

$$\lim_{x \to -4^{-}} f(x) = -\infty; \lim_{x \to -4^{+}} f(x) = \infty;$$
$$\lim_{x \to -\infty} f(x) = 0; \lim_{x \to -2} f(x) = 1;$$
f is undefined at -2;
$$\lim_{x \to 1^{-}} f(x) = -1;$$
$$\lim_{x \to 1^{+}} f(x) = 2; f(1) = 1$$

(2) Evaluate the limit, if it exists:

(a)
$$\lim_{x \to 3^{-}} \frac{|x^2 - 9|}{x - 3}$$

(b) $\lim_{x \to 1} \frac{4-x^2}{2-x-x^2}$

(c) $\lim_{x\to-2}[[\frac{1}{2}x+1]]$, where [[.]] denotes the greatest integer function.

(d) $\lim_{x \to +\infty} \frac{2x + x \cos x}{5x^2 - 2x + 1}.$

(e)
$$\lim_{x \to 0^+} x \sin(\frac{\sqrt{x+2}}{x}).$$

(e)
$$\lim_{x \to -\infty} (-33x+1)^3 (2x-1)^2 x$$

(3) Find the horizontal asymptotes of the graph of the function $f(x) = \tan^{-1}(\frac{\sqrt{9x^2+2}}{3x+7})$.

(4) Use the graph of $f(x) = 2\sqrt{x}$ to find a number δ such that $|2\sqrt{x} - 4| < 1$ whenever $|x - 4| < \delta$. (Show your work and write your answer in simplest rational form $\frac{p}{q}$).

(5) Use the Intermediate Value Theorem to show that there is a root of the equation $e^{-x^2} = x$ between 0 and 1.

(6)Find the values of a and b that make the function

$$f(x) = \begin{cases} 3 & \text{if } x = 1\\ ax^2 - bx + 3 & \text{if } 1 < x < 2\\ 2x - a + b & \text{if } 2 \le x < 3\\ 6 & \text{if } x = 3. \end{cases}$$

continuous on the closed interval [1, 3]. (Use limits to justify your steps)

(7) Given the function $f(x) = \frac{2x^2 + kx - 14}{x - 2}$, where *k* is a constant, find *k* such that x = 2 is a removable discontinuity of *f*. (Give reasons to your steps).

(8) The displacement (in meters) of a particle moving in a straight line is given by $s = \frac{1}{\sqrt{5-t}}$ where *t* is measured in seconds. Use limits to find the instantaneous velocity of the particle when t = 1.

(9) Prove that $\lim_{x \to 1} 2x + 2 = 4$.

(10) Find the equation of the tangent line to $f(x) = x - \frac{1}{x}$ at x = 3.

(11) Show that $f(x) = \sqrt{16 - x}$ is continuous on the interval $(-\infty, 16]$.

(12) Let

$$f(x) = \begin{cases} x^2 & \text{if } x \le 2\\ mx + r & \text{if } x > 2 \end{cases}$$

Find the values of m and r that make f differentiable everywhere.

Dr. M. R. Alfuraidan