Math 101-161 Major Quiz 5

Name: ID: Sec: Sr:

Question 1:

If
$$y = \sqrt{x(x-3)}$$
, then y is

- (a) decreasing on (0,1) and increasing on $(1,+\infty)$.
- (b) increasing on (0,1) and decreasing on $(1,+\infty)$.
- (c) increasing on (0,1) and increasing on $(1,+\infty)$.
- (d) decreasing on (0,1) and decreasing on $(1,+\infty)$.
- (e) increasing on $(0, +\infty)$.

Question 2:

If $f(x) = 4 + \sqrt{x-1}$, then the value of c guaranteed by the mean value theorem on [1, 5] is

- (a) 2
- (b) 1
- (c) 0
- (d) 6
- (e) 4

Question 3:

$$\lim_{x\to 0}\left[\frac{1}{x(x+1)}-\frac{\ln{(1+x)}}{x^2}\right]=$$

- (a) $-\frac{1}{2}$
- (b) 0
- (c) 1
- (d) ∞
- (e) $\frac{1}{2}$

Question 4:

The height of a right circular cone is 4cm and its radius is 2cm. The dimensions of the right circular cylinder with the maximum volume that can be inscribed in the cone is:

(a) radius =
$$\frac{4}{3}$$
 height = $\frac{4}{3}$

(b) radius =
$$\frac{2}{3}$$
 height = $\frac{2}{3}$

(c) radius =
$$\frac{2}{3}$$
 height = $\frac{4}{3}$

(d) radius =
$$\frac{4}{9}$$
 height = $\frac{4}{9}$

(e) radius =
$$\frac{4}{3}$$
 height = $\frac{4}{9}$

Question 5:

If we use Newton's method to find an approximate solution for $x-2\cos x=0$ starting with $x_1=\frac{\pi}{2}$, then the next approximate solution is $x_2=$

- (a) $\frac{\pi}{3}$
- (b) 0
- (c) π
- (d) $\frac{\pi}{4}$
- (e) $\frac{\pi}{6}$

Question 6:

If $f'(x) = \frac{(1+3\sqrt{x})^2}{x}$ then the most general antiderivative is

(a)
$$\ln |x| + 12\sqrt{x} + 9x + C$$

(b)
$$\ln|x| + 12\sqrt{x} + 9x^2 + C$$

(c)
$$\ln|x| + 6\sqrt{x} + 9x + C$$

(d)
$$\ln|x| + 3\sqrt{x} + 9x + C$$

(e)
$$\ln|x| + 6\sqrt{x} + 9x^2 + C$$