Solve and then select the correct answer:

Serial No:

The equation of the tangent line to the curve $y = 2 \tan \left(\frac{\pi x}{4}\right)$ at x = 1 is

(a)
$$y = x + \frac{\pi}{4}$$

(b)
$$y = \pi x + 2 - \tau$$

(c)
$$y = -\pi x + 2 + \pi$$

(a)
$$y = x + \frac{\pi}{4}$$

(b) $y = \pi x + 2 - \pi$
(c) $y = -\pi x + 2 + \pi$
(d) $y = \frac{\pi}{4}x + 2 - \frac{\pi}{4}$
(e) $y = 3\pi x + 2 - 3\pi$

(e)
$$y = 3\pi x + 2 - 3\pi$$

Let $f(x) = 1 + 2x - x^2$, $x \le 1$. Then $\frac{df^{-1}}{dx}|_{x=-2} =$

If $y = x^y$, then y' =

(a)
$$\frac{xy}{y + \ln x}$$

(b)
$$\frac{y^2}{x - xy \ln x}$$

4.	The radius of a sphere was measured to be $20cm$ with a possible error in measurement of at most $0.05cm$. The maximum error in the computed volume of the sphere is approximately equal to
	(a) $10 \pi \ cm^3$
	(b) $20 \pi \ cm^3$
	(c) $60 \pi \ cm^3$
	(d) $40 \pi \ cm^3$
	(e) $80 \pi \ cm^3$
5.	If $y = \left(\frac{1+e^u}{e^u}\right)^2$ and $u = \frac{1+x}{x}$, then the value of $\frac{dy}{dx}$ when $x = 1$ is equal to
	(a) 0
	(b) $-2(e^{-2}+1)$
	(c) $e^2 + e$
	(b) $-2(e^{-2} + 1)$ (c) $e^2 + e$ (d) $2(e^{-2} + e^{-4})$ (e) $-2e^{-2}$
	(e) $-2e^{-2}$
6.	The slope of the tangent line to the curve $\sin(x+y) = xy$ at the point $(0,0)$ is
	(a) -1
	(b) 53
	(c) 0
	(d) -2
	(e) 1

7.	The area of a circle is decreasing at a rate of $\frac{8\pi}{9} cm^2/min$. At what rate is the radius of the circle changing when the area is $\frac{\pi}{9} cm^2$?
	(a) $\frac{4}{3} cm/min$
	(b) $\frac{-4}{3} cm/min$
	(c) $-2\pi \ cm/min$
	(d) $-2 \ cm/min$
	(e) $2\pi \ cm/min$
8.	If $y = x^2 \sin^{-1}(x^2) + \sqrt{1 - x^4}$, then $y' =$
	(a) $2x \sin^{-1}(x^2)$
	(b) $2x\sin^{-1}(x^2) + \frac{4x}{\sqrt{1-x^4}}$
	(c) $x \sin^{-1}(x^2) + \frac{4x^3}{\sqrt{1-x^4}}$
	(d) $\sin^{-1}(x^2) - \frac{2x^3}{\sqrt{1-x^4}}$
	(e) $2x\sin^{-1}(x^2) - \frac{2x}{\sqrt{1-x^4}}$
9.	A man 2 m tall walks directly away from a street light that is 8 m high at the rate of
	$\frac{3}{2}$ m/sec. How fast is the length of his shadow changing?
	(a) $\frac{9}{2}$ m/sec
	(b) $\frac{3}{2}$ m/sec
	(c) $\frac{1}{2}$ m/sec
	(d) $3 m/sec$
	(e) $\frac{1}{3}$ m/sec

10.	The linearization of $f(x) = e^{\tan^{-1}(3x)}$ at $x = 0$ is given by
	(a) $L(x) = 3 - x$
	(a) $L(x) = 3 - x$ (b) $L(x) = 3x$ (c) $L(x) = 1 - 2x$ (d) $L(x) = 2 + x$ (e) $L(x) = 1 + 3x$
	(c) $L(x) = 1 - 2x$
	(d) L(x) = 2 + x
	(e) $L(x) = 1 + 3x$
11.	The edge of a cube increases at a rate of $3 cm/s$. When the edge length is $2 cm$, the rate at which the surface area of the cube is increasing is
	(a) $40 cm^2/s$
	(b) $72 cm^2 / s$
	(c) $12 cm^2/s$
	(d) $36 cm^2/s$
	(a) $40 cm^2/s$ (b) $72 cm^2/s$ (c) $12 cm^2/s$ (d) $36 cm^2/s$ (e) $84 cm^2/s$
12.	Using a suitable linear approximation, the value of $ln(1.02)$ is approximated by
	osing a saleasie inical approximation, one talks of initially
	(a) 0.02
	(b) 0.01
	(c) 1.02
	(d) 1.01
	(e) 0.04