Chapter 3 MQR

Markov Chain review
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Chapter 12 MQR Multiple Life Functions

The Joint Life and Last Survivor Statuses
. t
Tyy = min(Ty, Ty) Ty = max(Ty, T)) fay(t) = tDzy = Say(t) = exp (f fo ur+r:y+,,dr)
S@(t) = tPzt tPy— tPxy fﬁ(t) = tpxﬂx+t+ tPylytt— tPayMytty+t
Fundamental Symmetric Relations (from min(a,b) + maz(a.b) = a + b)
Toy+Tag =Ty + Ty (Random Variable)
Pyt Py = Dot tDy or  Syy(t) + Say(t) = Su(t) + Sy (2) (Survival Function)
Gyt 1037 = Gzt tqy or  Fpy(t) 4+ Fay(t) = Fy(t) + Fy(t) (Distribution Function)

faoy (@) + fag(t) = fo(t) + £y (D) (Density Function)
regardless of whether T}, and T, are independent.

tPeyHott.y+t

Deferred probabilty for last survivor: P(m < K < M~+n) = minGey = minley — m9ey = mindet minGy— mindey
Two Independent Lifetimes Hattigrt = Hage T Hyte

tPay = Pr(Ty >t and Ty > t) = 1py ¢y tqzy = Pr(Ty <tand T, <t) = 1qq +qy

Mg + - T T
Force of Mortality of the Last Survivor Status: p;r777 = Pablore T tPylyte = tPrylleyte
| tPzy

Mean, Variance and Covariance of Two Lifetimes

= E(T. fo t fay(t)dt = fooo Py dt Cay = E(K;y) = > kPay

k=1
ezy = B(T: fO t fﬂcy fo tpxﬂa:+t+ tpy,U'ert tpryﬂm+t:y+t) dt = gfﬂ + gy - gfﬁy
ez = (K* ) = Z kDT = €z + €y — €qy Ty fo t2 fry (t)dt = 2f0°° b 1Pay dt E(Tiy) = 2fO°°t -t prydt
k=1
fo fo = [tz ty)dtdt, Cou(T,,Ty) = E(T, - T,)) — E(T,) - E(Ty)

E(TbLy)+E(T ) = E(T)+E(T)
Var(Tey) + Va?"( wy) = Var(Ty) + Var(Ty) = 2[(E(T:) — E(Twy)) (E(T,) — E(Tky))]
Cov(Thy, Tsy) = Cov(T,.T,) + [HH—MQMXWH@—MLMﬁH&H?Mmm‘a—%J@yém)
Statuses Invtolving the Order of Death: Contintgent Probabilities for Independent Lives

tqu = fO Pr (Ty > T, | T, = u) fx(u)du = fO uDy upa:,u'g;-t,-uduv

t t
= fo Pr(T, <T,| Ty =u) fy(u)du = fo ula uDyby4,dU t(I1 + g, 3= tqzy tq%y‘i‘ tngz; = tqzy

Symmetrlc Relation between Joint and Last Survivor Continuous Insurance
Apy+ Azg=A, + 4,
similar relations hold for n-year term, pure endowment, and endowment insurances.
Covariance between J oint and Last Survivor Benefits
Cov(vT=v,vT77) = Cov(vT=,v1v) + (A, — Auy) (Ay — Agy)
Similar relatlons hold for n—year term, pure endowment, and endowment insurances.
1. Relation between Insurances and Annui};iesA
zy

L= Ay 1Ay . .
Ty — d7 Ty —

amy = ) Uzy =

1— Az

Yy

Similar relations hold for n-year endowment insurances and annuities.
2. Fully Discrete Insurances and Annuities



x K Xk
Ary = D, V" kPay Ay =FE [U ”] = > 0" k1l qay
k=0 k=1
azg = 3 V" Py AW:E[U “’]ZZU k-1l ey = Az + Ay — Ay
k=0 k=1
3. Reversionary Annuities (payment only when one life fails until the other also fails)
oo oo
Payment to (y) when () has failed: az), = > 0% (kGz & Py) = 2 V¥ (kPy —k Day) = Ay — Aay

k=1 k=1
n n

n-yrs (at most) pmt to (z) when (y) has failed: ayjzn = > 0" (ko & py) = Z vk (kpy —k Pay) = Gyt — Qgyen”
k=1

Continuous Payment to (y) when (z) has failed: @), = fooo V" (¢Gy -+ py) dt = fo (tPy —t Day) dt = Ty — Gyy

Gyle  ay — Guy Aypt|art — Playz) - Aot toytt both survives
Playj,) = — = ——. tV(ay).) = Gptt if (z) survives and (y) fails
Gy Gy 0 since contract expired  if (x) fails and (y) survives
Ozy = Qg|y T Qy|z T Qay
4. 9 tlngent Insurance B B
A}U = fo 't Pmyﬂmﬂd Agy = fooo ot thMert(l_ tpy)dt =A; - Aglcy-
5. m-thly payable multiple life beneﬁts '
under UDD: aiy) ~ a(m)agy — B(m) d;;) ~ a(m)azy — B(m) AQ(L.? ~ %Awy A,%L) A@
7 m
. (m) .
() m) _ i sy — b i—qtm

o(m) =178y = s P = — e = Gogem

non-UDD (Woolhouse formula): a

oy P ay = o W((S_F:umy)
. ..(m) _ .
gy = ey Ny = 5 = 7500 Hy)
Premiums and Reserves
P:L’y = = . P@ = ﬂ tVa:y = A:c+t:y+t - Pa:y ' dm+t:y+t
Qgy Uzy
Azrigmr — P gt if (z) and (y) survives
tVag = Aptt — Py - Qg t: if (z) survives and (y) fails
Ayt — Prg - ayyy if (z) fails and (y) survives
Dependent Life Models - Common Shock Model
if constant f if constant f
Mm+t /111:+t + MC 1I constan Common orce M;+t + )\ Ny+t I,Ly+t + MC 1I constan Common orce #Z+t + )\
Hpttiy+t = Pttt ﬂ;+t +A tPay = exp(— fo [Mm+t + Ny-s-t + )‘] dt) = p;- tpy A
e = 10 - €M Dy = Py e Note that g,y # Haye + Hyre and - Pay 7 P 1Py

An Exponential Common Shock Model with Constant Force of Transitions (From ACTEX MLC manual)
Ty~ Exp(uz +X), Ty~ Bap(ug +X),  Toy ~ Exp(ug + py + )

— MDY — S TP 1 — -
AI:L zy:% Upy = ——————— Azg = Ay + Ay — Ay
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Chapter 13 MQR Multiple Decrement Models: Theory

OBJECTIVES: 1.To understand the concept of a multiple decrement table

2.To understand the force of decrement

3.To construct a multiple decrement model using associated single decrements and to apply various assumptions to
calculate rates for discrete jumps.

13.1 Discrete Multiple Decrement Models

) =+ g g = zq“ (13.1) p=1-q" (13.2)
) =1— gt (13.7¢) 6 =6 pl (13.7f)
00— 3D (13.6) d9 = o . ) (13.72)
j=1
m . . n—1 . .
) = Zldi” =07 ¢ (13.3 & 13.7b) Wdd) = Zod;fjt S/ CRNE) (13.4 & 13.7¢)
Jj= t=



m . m .
ndD = 35 a9 = . g (13.5a & 13.7d) na) = WdO N0 =5 Y (13.5b)

j=1 j=1
13.1.2 Random Variable Analysis
(3)

d
The joint probability function of K* and J, is Pr (KX =kNJ, =j) = 1] q(]) xg(f)fl (13.8)
The marginal probability functions are ‘
d(l) 4+ o+ d(m) d(])
i) Pr(K:=k) = ZPr( = kN Ty =5) = pa|gd) = =L e zth—1 72%;31 (13.9)
o g i
i) Pr(J, = j) = ZPr( *=kNJ,=j) = 29?(77’“)‘1 (13.10)
13.2 Theory of Competlng Risks Wg D > g4 (13.11)
13.3 Continuous Multiple Decrement Models
_d ) UG
G _ _dt"” () dt " 1G) _ ©)
9, e (13.12a)  ul7, = o (13.132) 9 = exp (_ JEnY), ds) (13.12b)
G = [ pOu9) ds=1- /9 Survival Probability (" = exp( i), ) (13.13b)
For (8) = i - s (13.14)  Fuo(0) = Pr[T0 <] = [ foo(s) ds = 3 okl ds (13.15)
A .
n dat "7 (n__@ /(1) 1(2) 1(m)
Boye = — (o0 = In; py, In |ypy™ - 4pg™ ot Dy
) Cdt dt [ }

d d d m m .,
( 7 In p/(1)> + ( pr In tp:13(2)> + ..+ (_dtln D' )) = fg iy F Mot + - +:u‘z+t Z“Ht (13.17)

Fundamental Relation Between Primed and Unprimed Rates: tp( 7= = exp Z fo ugf_e_s ) = 1:[ tp:/p(j) (13.16)

) = [ fra(s.g) ds= [y - pd), ds (13.18) at = f8 o ) ds o (13.20)
d (J)

d T T

7 1 ¢ = fo D) ds = i) — ), = dtpm (13.19)
tlx

Joint Distribution of 7, and J, Pr(t < T, <t+dtand J, =j) =~ tpg; ug}_tdt th fo gp(T) ufjls ds.
13.4.1 Uniform Distribution of Decrements in the Multiple Decrement Context

) =t gy (13.21) o = i ul), (13.22)
@ =t g (13.23) ) =1—t- g7 (13.24)

(J) (9) ) (j) 49 /("
Mglt = (T) = g @) (13.25) tp;(j) = exp % In (1 —t- q(T)> (1 t- q(T)) (13.26)

Pz I1—-t-qu
13.4.2 Unifqrm Distribution in the Associated Slngle- Decrement Tables
tq;c(J) —t. qlz(]) (13.27) /(J) Mngt — q;(J) (13.28)

1
Double decrement case: (Jz fo ( ;(2)) /(1)dt /(1) (1 -5 q;,(2)> (13.29a)
1
¢? = ¢ (1 -5 qﬁ”) (13.29b)
1

Triple Decrement case: qg;l) = q;(l) {1 B ( AS) +q (3)) + 3 (q/z(z) . q;(g))] (13.30)

Miscellaneous Results (From ACTEX MLC manual)
1. Assumptions on the single decrement table.
Backing out the Unprimed Rates from Primed Rates

m .
sqr fo tpv /J’w+t fo [I tp;c(j) /%H dt
j=1,j#i
2. Constant Force Assumption for Multiple Decrements For any ¢ € [0,1] and integer-valued z,



(1) tp(zT) = {pg)} (survival probability for fractional ages)
tqgcl) :u’;(vJ)rs
[

q ILL,’E S
* (r)

o], (ﬂrm)/%

(ii) Ratio Property : for any s € [0, 1] (To get unprimed rates from (¢) )

(iii) Partition Property : ¢pz (To get primed rates from unprimed rates from (i) )

3. Uniform Distribution of Death (UDD) for Multiple Decrement (MUDD) Table
For any ¢ € [0, 1] and integer-valued z,

(@)
(), @& _ @) ; @ _ _ Y=
(i) ¢pz "pyis = g or equivalently g1, = Wfor t#1

(@) (@)

x

(ii) Ratio Property : qELT) N(z:gs for any s € [0, 1]
tqz :u’z+s
) _ [ ] %

(iii) Partition Property : ¢py (To get primed rates from unprimed rates tq ) and p( )

Discrete jumps: Handling Both Dlscrete and Continuous Decrement

m .
qu fo 11 tp;( )] tp;( R /% Hdt holds when decrement ¢ is continuous.
j=1, j#i
2) o) = > 11 tkp;(j) A(tkq;(i)) holds when decrement i is discrete
th< s | j=1, ji
Here t, are the jump times and A (tk i )) is the jump size at time ¢g.
Chapter 14 MQR Multiple Decrement Models: (Applications)
14.1 Aogtuarial Present Value -
= S ok Pr(K: =k) (14.1) AP = Sk Pr(KE=kNJ, =) (14.2)
— k=1
If the time and cause of decrement are independent,
Agf) = Yo% - Pr(K! =k)-Pr(J, =7) (14.3a) or Agj) Zv i—1Da () qi{ik 1 (14.3b)
k=1
For benefit paid at the instant of failure Z;J) = [ vty P M:S:{)H dt (14.4)
14.2 Asset Shares [(AS+G(1—r) —el](1+1) = bgl) (1) + b(2) By ,48-p, (14.5a)
A 1— _ 144) =D . g _p> 2
s0 1 Ag = 0AS+ GO —m) — e (J:)z) 1 % ~h 4 (14.5b)
Dz
In general, [,—1AS +G(1 — 1) —eg] (1 +14) = b(l) . qilﬁk L+ b(2 quk 1+ KAS - p‘g;)kil, (14.6a)
G AS+G(1 =) —er] (1 43) =0 gl — b g
so kAS _ [k 1 ( k) k]( (7_)) Qpir—1 Qetk— 1 (146b) U = kAS— kVG- (147)
Prik—1
14.3 Non-Forfeiture Options
14.3.1 Cash Value CV,
14.3.2 Reduced Paid-up Insurance
tCVx tvx
RPU = 2= (14.8) W, = , (14.9)
x+t A:z:+t

14.3.3 Extended Term Insurance CV, = Aw i)
14.4 Multi State Model Representation
14.4.2 The Total and Permanent Disability Model

(1410) tCVa;:n] == Ai+t:nfﬂ +PE TL—tEl'-‘rt? (1411)

hZ(” D= Tp&” HHT dr (14.12a)  MAD = [y Tpll) A13( ) dr (14.12b)
Apyr = fo ’ spa:+r Nz+r+s ds (14.13a) Aoty = fo : sp22 A23(s) ds (14.13b)
hZi = OOO r Tpg) ,ux_,_r TA, . dr = fo rpé ™) ,ugﬁ, ( s px_w . [Lx+7,+s ds) dr (14.14a)
hZi = Ooo . Tpu) A12(r (f v p22 Aa3(s) ds) dr, (14.14b)
had = [ ur e pi) - uilr Tppr dr = fo Tl (e s ply, ds)dr (14.15a)
had = [ o" Cp\W Ao (r (f oS o ply ds) dr, (14.15b)



14.4.3 Disability Model Allowing For Recovery f (x 4+ Az) =~ f(x) + f'(z) - Az (14.16)

d ,
TP = Al — ol A ) (at k=2)
+ 7-]713 As1(t+ 7") 7.p§t) Az(t+7) (at k of 3)
= o\ At 1) — ol Dzt + ) + At + )], (14.17)
d
Ty = Al — ol (i) (at k=1)
+ P - Asa(t+ 7") DY Aas(t +7) (at k of 3)
= o\ At 1) — ol Dar(t+ 1) + st + 1) (14.18)
d
rrarply & opl ool Ar (14.19)
7“+A7“p§1) ~ rpu) +Ar {rpu A21(r) — rp11 [Ai2(r) + /\13(7“)]}, (14.20)
T+Arp§2) ~ rp12) +Ar {rpu) A12(r) — rpgz a1 (r) + )\23(7“)]} , (14.21)

14.4.5 Thiele’s Differential Equation in the Multiple Decrement Case ‘
_ APVB  APVI Y APVY

a) = [ pTdr (1422) P= HoR @(J;” = " (14.23)
aa;+t fo v®- spg-i-t dr (14.24) di IV =P+ V-~ Hi@t (1 — V) - Hgﬁt (fV— ?V) : (14.25)
= Gy 507 — 1 4D, (1-47) - ), (0T - 47 (14.26)
7 AT AL P Tl (1 1T) -t (V- 1),
o RV AV -at{Pro V- pll), (1= 1Y) - pd,, (V- 17} (14.27)
o 4V~ 4T - At {5 AV —1— 4l (1= a7y = 4l (g gV)} (14.28)

14.5 Defined Benefit (DB) Pension Plans
14.5.1 Normal Retirement (NR) Benefits
Projected Annual Benefit PAB, = 0.01p- YOS, - FAS, (14.29)

Final Annual Salary FAS, = % (Sz_3 R R SZ_1> -CAS, (14.30)

Sa:
1 —
Projected Aggregate Salary PAS, = S— Z Sk - CAS, (14.31)
Projected Annual retirement Benefit: PAB =0.01p- PAS, (14.32)
APV of the projected benefit, at age x: APVNE = PAB, - v*~7. Z,mpg)~ ngu). (14.33)
14.5.2 Early Retirement (ER) Benefits
64 1 — T r .. (12
APVEER = y;mPAByH/z . {1 —0.05 (65 —y— 2)] cpytl/2=35 (0 gl Ta;+i/2 (14.34)

14.5.3 Withdrawal and other Benefits
Assuming a 5-year vesting rule and assuming employees take their withdrawal benefit at NRA, the APV at age 35 is

59
r w) w (12
APV3 = %+5PABy+1/2 - 030, y735pg5) '(11(/ ). 65—y—1/2Py+1/2° aé5 ) (14.35)
y=

14.5.4 Funding and Reserving

APV
Normal Cost (Early Age) NCFAN = (7)73” (14.36)
riz—x]
VI =APVE, — NCEAN . S_gt i) (14.37a) or retrospectively as VI = NCEAN. 55;11 (14.37b)
APV of the benefit accrued between ages « and 2 +1: APVNE = (AB,,, — AB,)-v*® ,_p\. g (14.38)

14.5 Gain and Loss Analysis
Profit with all anticipated factors:

P0) =[V+G 1 —=ry1) = era] (1 +ig1)— sz(e% + 5%21) a\ + (bﬁ% + s ) a2+, t+1V} (14.39)
Profit with some actual experience in place of anticipated factors:



P(1) = (14.39) with all anticipated factors except actual value for 1 factor.
P(2) = (14.39) with all anticipated factors except actual value for 2 factors
P(3) = (14.39) with all anticipated factors except actual value for 3 factors.
P(4) = (14.39) with all anticipated factors except actual value for 4 factors.

Gain from factor whose gain is calculated first is GI* = P(1) — P(0) (14.40a)
Gain from factor whose gain is calculated second is G2 = P(2) — P(1) (14.40Db)
Gain from factor whose gain is calculated third is Gf* = P(3) — P(2) (14.40c¢)
Gain from factor whose gain is calculated fourth is G = P(4) — P(3) (14.40d)

Gain from factor whose gain is calculated kth is GI* = P(k) — P(k — 1)
Total gain GT = G + G2 + G + GF+ = P(4) — P(0) (14.41) Total gain GT = 2“:33 G = P(last) — P(0)
When death occurs throughout year but withdrawal only at end of year, the anticipated profit expression is
PO) =V + G —=re1) — era] (1 +d41) - [(b§21 + 5&)1) Ca + <b£i)1 + 'Sg—)l) (1 - q;-(}r)t) A UL (14.
ACTEX MLC Chapter 9 Study Manual Vol II Multiple Decrement Models: Applications
Thiele’s Differential Equation under Multiple Decrement
d VI - n . . .

L= Gil—a) -+ (5 + u;gt) VI3 (bga) N Etm) )

j=1
Recursive Relation for Expected Asset Shares
[WAS +Gh (1 —cn) —en] 1 +1) =7y 11 AS + 1), 11OV + 012, brga
Chapter 15 MQR Models with Variable Interest Rates

15.4 Forward Interest Rates (1+y5)> = (1+y)" - (1+ f174)4. (15.1)
(Ltya)' =L y)® (14 fo2)”  (152)  (Ldy)' (L fison)” = (L +u) " = (14ys)”. (153)
(I+y2)? =1+ fi,1) (1 + fon)
Chapter 12 ACTEX MLC Study Manual Vol 11 Interest Rate Risk

—t b (Lt yen)™ v(t)
Spot interest rate v(t) = (1 + ;) Forward interest rate (1+ f; ;)" = =

1+y)  vt+k)
Chapter 16 MQR Universal Life Insurance
16.2 Indexed Universal Life Ins%y.an(l:el. dex Closing Val
) . ) inal Index Closing Value

Point-to- t method: = -1 16.1

a) Point-to-point method: ip Initial Index Closing Value ’ (16.1)
L 5" Monthly Index Closing Values

b) Monthly average method: 474 = 12 2 Y X e YA 1. (16.2)

Initial Index Closing Value
16.3 Pricing Considerations
Mortality rate, Lapse rate, Expenses, Investment Income.

Double decrement model: p{” =1 —¢{” =1 — ¢{? — ¢{*). (16.3)
Withdrawal at end of year only: p\) = (1 - qg(cd)> (1 - Qa(cw)) : (16.4)

Pricing for Secondary Guarantees: a) Stipulated premium method, b) Shadow fund method.

16.4 Reserving Considerations

ULI Universal Life Insurance. Policy is marked by (a) extensive policyholder choice,
(b) policyholder participation in interest rate risk, and (c¢) secondary guarantee features of coverage
VUL Variable Universal Life insurance. Separate investment accounts for net contributions.

EIUL Equity-Indexed Universal Life insurance. Interest/investment is credited to contract at rate that
depends on some published stock index such as SP500, DJIA, or EAFE index

SCy Surrender Charge at time ¢.

M&FE; Mortality and Expenses Charge at time t.

NAR; Net Amount at Risk at time ¢.

AV, Account Value at time t.

CV, Cash Value at time t. (CV, = AV, — SCYy)

NAIC National Association of Insurance Commissioners

PG Policy Guarantees (Guarantees given as part of an insurance policy).

GMP  Guaranteed Maturity Premium. Level gross premium sufficient to endow the policy at its maturity
date based on the policy guarantees of premium loads, interest rates, and expense and mortality charges.

GMF  Guaranteed Maturity Funds. Calculated based on the roll forward of the GMP and the policy guarantees.

GDB  Guaranteed Death Benefits.



GMB Guaranteed Maturity Benefits.
PVFB; Present Value at time t of the projected Future Benefits.
PVFP, Present Value at time ¢ of the Future GMP stream.
CRV M Commissioner’s reserve valuation method
CSV; Cash Surrender Value at time t.
AMR Alternative Minimum Reserves.

Roll Forward =bring a financial value forward to the future .

16.4.1 Basic Universal Life (ULI)
Process for 1983 NAIC regulation to define a minimum reserving standard for UL products.
a) At policy issue,

1. a guaranteed maturity premium (GM P) is calculated as the level gross premium sufficient to endow the policy at
its maturity date. The GMP is based on the policy guarantees of premium loads, interest rates, and expense
and mortality charges.

GM P, is policy guarantees of f(premium loads, i, M&FE).

2. a sequence of guaranteed maturity funds (GMF) is calculated based on the roll forward of the GMP and the
policy guarantees

a sequence GM F=roll forward of f(GM P, policy guarantees).

b) At the valuation date, ¢,

3. actual AV; determined by the account value roll forward process.
ULI with variable failure benefit B + AV; (11.25¢): AV; = [AVie1 + Gi(1 — 14) — e — vequrt—1.B] (1 + i)
ULI with fixed failure benefit (11.26b): AV, = [AVi_1 + G:(1 —7¢) —e] (1 +4¢) — @uiyr—1.(B — AV})

[A‘/t—l + Gf(l — T’t) — et] (1 =+ Zt) — qx_,_t_l.B

(11.27) AV, =
Pz4t—1

AV

AV <1 (16
GME, "t = (16.5)

4. the ratio of the actual account value to the GMF is calculated as r; =

5. max(AV;, GM F}) is projected forward based on the GMP and the policy guarantees. This produces a sequence of
GDB and GMB.

6. PVFB; and PV FP; are calculated using valuation assumptions. Then the pre-floor CRVM reserve is defined as
Jvpre=floor CRVM — . (PV F B, — PVFP;) (16.6) with r; as defined above.

7. [V floor CRVM — max(%—month term reserve based on minimum valuation mortality and interest, C'SV%).

8 tvfinal CRV M tvpreffloor CRVM tvfloor CRVM)
. s .

= max(
The regulation also defines alternative minimum reserves (AMR).

1. the valuation net premium is calculated at policy issue (¢ = 0) based on the GMP and the policy guarantees.

2. If the GMP < the valuation net premium (VNP),
the reserve held =max(a, b)
where a =the reserve calculated using the actual method and assumptions of the policy + VNP,

b= the reserve calculated using the actual method but with minimum valuation assumptions + GMP).

16.4.1 Indexed Universal Life (eIUL)

NAIC Actuarial Guideline 36 (AG 36) specifies the valuation standards for IUL contracts. 3 computational meth-
ods:
1) The implied guaranteed rate (IGR) method: which requires insurers to satisfy the hedged-as-required crite-
ria. These criteria set forth a strenuous constraint requiring exact, or nearly exact, hedging, as well as an indexed

interest-crediting term of not more than one year.
2) The CRVM with updated market value (CRVM/UMV) method:



must be used if the contract has an indexed interest-crediting term of more than one year, or if the renewal partici-
pation rate guarantee gives an implied guaranteed rate greater than the maximum valuation rate. This method can be
volatile when market conditions change.
(3) The CRVM with updated average market value (CRVM/UAMYV) method:

is a hybrid of the other two, designed for an insurer who qualifies for the first method above but does not wish
to satisfy the hedged-as-required criteria.

The CRVM/UMV method has calculation steps as follows:
a) The issue date (t = 0) calculations are as follows:

1. An implied guaranteed interest rate (IGR) for the duration of the initial term,

is the guaranteed rate plus the accumulated option cost expressed as a percentage of the policy value to
which the indexed benefit is applied. In turn, the accumulated option cost is the amount needed to provide
the index-based benefit in excess of any other interest rate guarantee, accumulated to the end of the initial term
at the appropriate maximum valuation rate.

2. An implied guaranteed rate for the period after the initial term.
3. The GMP, GMF, and valuation net premium based on the implied guaranteed rate.
b) The valuation date (¢t = ¢) calculations are as follows:

1. The implied guaranteed rate for the remainder of the current period, using the option cost based on the market
conditions at the valuation date.

2. The implied guaranteed rate for the period following the current period, based on the option cost on the valuation
date.

3. A re-projection of future guaranteed benefits based on the implied valuation date.

4. The present value of the re-projected future guaranteed benefits.

Note that the GMP, GMF, and valuation net premium remain the same as calculated at issue (£ = 0).

16.4.4 Contracts with Secondary Guarantees

NAIC Actuarial Guideline 38 (AG 38) for reserves for UL products with secondary guarantees have 9 steps as follows:

1. The minimum gross premium required to satisfy the secondary guarantees is derived at issue (t = 0) of the
contract; the value of this premium will depend on whether the stipulated premium or the shadow fund method is
in use. Its calculation uses the policy charges and credited interest rate guaranteed in the contract.

2. The basic and deficiency reserves for the secondary guarantees are calculated using the minimum gross pre-
mium described in Step (1).

3. The amount of actual contributions made in excess of the minimum gross premiums is determined, again
with the process depending on whether the stipulated premium method or the shadow fund method is used.

4. At the valuation date, ¢, a determination is made regarding amounts needed to fully fund the secondary
guarantee.

(a) Under the shadow fund method, this would be the amount of the shadow fund account needed to fully fund
the guarantee.

(b) Under contracts not using the shadow fund method, this would be the amount of cumulative premiums paid
in excess of the required level such that no future premiums are required to fully fund the guarantee.

Special rules apply to policies for which the secondary guarantee cannot be fully funded in advance. Here a
prefunding ratio, r, (r < 1), is calculated that measures the level of prefunding for the secondary guarantee,

and is eventually used in the calculation of reserves. It is defined as
Ezxcess Payment

= . 16.7
" Net Single Premium Required to Fully Fund the Guarantee ( )

5. At the valuation date, ¢, the net single premium for the secondary guarantee coverage for the remainder of the
secondary guarantee period is computed. NSP;.



. A net amount of additional premiums is determined by multiplying the prefunding ratio described in Step (4)
times the difference between the net single premium of Step (5) and the basic plus deficiency (if any) reserve of
Step (2). r(NSP, —ppa, V)

. A reduced deficiency reserve is determined by multiplying the deficiency reserve (if any) by the complement
of the pre-funding ratio from Step (4). red d, V=1 —1)q,V

. Then the actual reserve is the lesser of (a) the net single premium of Step (5), or (b) the amount in Step (6)
plus the basic and deficiency (if any) reserve from Step (2). This result might be reduced by applicable policy
surrender charges. actual, V. = min(NSP;, Stepb + Step2)

. An increased basic reserve is computed by subtracting the reduced deficiency reserve of Step (7) from the

reserve computed in Step (8), which then becomes the basic reserve. iner b,V =actual, V —red d, V-

Also AGSStV —actual; v +red dy V

ACTEX MLC Chapter 14 Study Manual Vol II Universal Life Insurance
14.1 Basic Policy Design
Account Value Accumulation AV, = (AVi_1+ P, — EC, — Coly) (1 + %)
ULI with variable failure benefit (11.25¢) AViy1 = [AV: + Gip1(1 — 7e41) — €t41 — Vep1qar1-B] (1 +4e41)
ULI with fixed failure benefit (11.26b) AV = [AV: + Gip1 (1 — 7e41) — erg1] (L + 4441) — Qoy1.(B — AViyq)
[AVy 4+ Gipa (1 — 1eq1) — eeq1] (L4 de41) — gos1.B
Pax+t
14.2 Cost of Insurance and Surrender Value
Total Death Benefit
Specified Amount (Type A): max (FA,vy, AV})
Specified Amount plus the Account Value (Type B): max (AV; + X, v, AV;)
Additional Death Benefit
Specified Amount (Type A): ADB; = max (FA— AV, (v, — 1) AW,)
Specified Amount plus the Account Value (Type B): ADB; = max (X, (v, — 1) AV;)
General Formula for the cost of Insurance Col; = ¢f X vy X ADB,
where Col, is the cost of insurance for the #*" time period, deducted from the account value at time ¢ — 1,
q; is the death probability (for the ¢! time period) used to calculate the cost of insurance,
vq is the discount factor for discounting the cost of insurance to time ¢ — 1,
ADBq is the additional death benefit at time ¢.
Cost of Insurance for a Specified Amount (Type A) Policy
Col; = max (Co]f,CoIf)
qfvg (FA— (AVi_1 + P — ECy) (1 +145))
1 = gfvg (1+1f)
1+4) (v, — 1) (AVi1 + P — EGy)
1+ qfvg (1 +14) (v, — 1)
Cost of Insurance for a Specified Amount plus the Account Value (Type B) Policy
Col; = max (Co]f,CoIf)

(11.27) AV =

where Co]tf =

Col = i Yq (

givg (1 +1i§) (v — 1) (AVie1 + P — ECY)
L4 givg (1 +4§) (v, — 1)

where C’oItf = q; vy X and Colf =

14.5 Profit Testing
Expected Profit: Pr; = (AV,_1 + P — ECy)(1+i§) — EDB, — ESB; — EAV,

Chapter 17 MQR Deferred Variable Annuities
17.2 Deferred Annuity Products
17.2.2 Variable Deferred Annuity

Investment Advisory Fee: ITAF;(n) = FVi_1(n) - [(1 + IAFt(n))l/?’65 — 1} . (17.1)

Net Investment Rate for day t : NIF;(n) = NIi(n) - IAFt(Z_,)V—i_ R(C)Gt(n) +UCG: (n)7 (17.2)
t—1{"

Net Investment Factor: NIF;(n) =1+ NIR:(n). (17.3)

Sub-account n Fund Value recursion: FVy(n) = FV,_1(n)- NIFi(n) — EXPi(n), (17.4)



Overall contract Account Value on day ¢ : AVy =S FVi(n). (17.5)

17.2.8 Equity -Indexed Deferred Annuity
Index value on closing day of index period

a) point-to-point: ip = 1, (17.6)

Index value on initial day of index period
. % [Sum of index values on the last day of each month during index period]
b) monthly ave: ipa = =2 — - - -
Index value on initial day of index period
(17.7)

Index value on closing day ¢ of index period

c¢) with ratcheting ip =

)

Index value on day ¢t — 1 of index period

d) with ratcheting i ﬁ [Sum of index values on the last day of each month during index period]
with ratcheting iy, 4 = _

Index value on previous day t — 1 of index period

17.3 Immediate Annuity Products

, ) ‘ Py
17.8.2 Variable Immediate Annuity APU = POV (17.8)
PUV, = PUV,_,4 (NIFt> (17.9) P, = (APU) (PUV,). (17.10)
1+ AIR)’
P, = (APU) (PUV;_1) (%) — P, (%) . (17.11)
ACTEX MLC Chapter 13 Profit Testing
Profit vector Pr = (Prg, Pry, Pry, Prs....)/

Profit signature IT = (T, Iy, Iy, 15, ....)" = (Pro, Pry, p; Pra, op, Prs,....)’

Expected profit that emerges in (h + 1)*" year

Prpy1 = N[(WVI+Gr(1 —cp) —en) (1 +14) — (bpe1 + Ent1)qesn + Doth ne1VY]

= N[(Gh(I —cn) —en)(I +1) = (bht1 + Eng1)Garn + T+ 9)VI = Dogns np1 VY] (1)
Pr; =equation (1) without acquisition cost. Prg = — all acquisition costs

Extension to Multiple State Models (assuming N = 1)
. ) ) ) . ) n & - .
Prifl = (VO + G (1= ) = 101 +0) = 2 0 + B+ Vel

k=0
n h
I = (I, Iy, I, ....), I, =Y ,1p% Prl? M, = Prl,
k=0
o, = > opo* Prgj) = opt° Prgo) = Prgo)

k=0
Traditional Insurance Policies with Withdrawal (assuming N = 1)

PTELOL = [V O + Gu(l = cn) —en](1 + i) [h+1V(0)p§;2h+ h+1CVq§f+)h + (bhg1 + Eh—&-l)qg(f.gh] h >0 and

Prgﬁl =0, Prﬁzl =0,h>1 Pré0> = — acquisition costs
0, = p1pt” Pr;(lo), h>2, I, = Prﬁo), Iy = PI"(()O)

Extension to Policies with Continuous Benefit (assuming N = 1)
Prip1 = [aV9+ Ga(l —cp) —en](1+14) = [(1+0)2(bnros + Bns0.5)de+h +Dath n1V9] .
13.2 Profit Measures

1. Net present value (NPV): NPV (r)= 3%, Cr .
i=o(1+r)*
If the NPV > 0, then the investment is deemed profitable.

2. Internal rate of return (IRR): The internal rate of return is the zero of the equation

- n Ck
NPV(r) = kzzoi(l e

=0.

3. Discounted payback period (DPP)
Given the hurdle rate r, the discounted payback period (also known as the break-even period) is the smallest
value of m such that > Ci >0
i=o(L+m)k
DPP is the time until the investment starts to make a profit.
4. Profit margin

10



Profit margin is the NPV of the net cash flows as a percentage of the NPV of the revenues. Suppose that
NPV(r)
n Rk:
E - r
i=o(L+r)*
For life insurance, Cy, = Il;, Ry = G rp., NPV is expected present value of the profits at issue and premiums as
revenues (mortality rate taken into account).

the revenue cash flows are Ry, R1, Ro,...R,. Then the profit margin is

St
NP —o(1 k
Profit margin = Vi(r) = =+ r)

X": G 1Pz 2”: Gr kPx

im0 (L4+m)F (1 47k

1 n Hk

1
5. NPV as a proportion of the acquisition costs = — NPV (r) = — —_—
prop q T, (r) H0k§0(1+r)k
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