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Chapter 12 MQR Multiple Life Functions

The Joint Life and Last Survivor Statuses
Txy = min(Tx; Ty) Txy = max(Tx; Ty) fxy(t) = tpxy�x+t:y+t tpxy = Sxy(t) = exp

�
�
R t
0
�x+r:y+rdr

�
Sxy(t) = tpx+ tpy� tpxy fxy(t) = tpx�x+t+ tpy�y+t� tpxy�x+t:y+t

Fundamental Symmetric Relations (from min(a; b) +max(a:b) = a+ b)
Txy + Txy = Tx + Ty (Random Variable)
tpxy+ tpxy = tpx+ tpy or Sxy(t) + Sxy(t) = Sx(t) + Sy(t) (Survival Function)
tqxy+ tqxy = tqx+ tqy or Fxy(t) + Fxy(t) = Fx(t) + Fy(t) (Distribution Function)
fxy(t) + fxy(t) = fx(t) + fy(t) (Density Function)

regardless of whether Tx and Ty are independent.
Deferred probabilty for last survivor: P (m � K�

xy < m+n) = mjnqxy = m+nqxy � mqxy = mjnqx+ mjnqy� mjnqxy
Two Independent Lifetimes �x+t:y+t = �x+t + �y+t

tpxy = Pr(Tx > t and Ty > t) = tpx tpy tqxy = Pr(Tx � t and Ty � t) = tqx tqy

Force of Mortality of the Last Survivor Status: �x+t:y+t =
tpx�x+t + tpy�y+t � tpxy�xy+t

tpxy
Mean, Variance and Covariance of Two Lifetimes
o
exy = E(Txy) =

R1
0
t� fxy(t)dt =

R1
0 tpxy dt exy = E(K

�
xy) =

1P
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kpxy

o
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0
t� fxy(t)dt =

R1
0
t � (tpx�x+t+ tpy�y+t� tpxy�x+t:y+t) dt =

o
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o
ey �

o
exy

exy = E(K
�
xy) =

1P
k=1

kpxy = ex + ey � exy E(T 2xy) =
R1
0
t2fxy(t)dt = 2

R1
0
t� tpxy dt E(T 2xy) = 2

R1
0
t �t pxydt

E(Tx � Ty) =
R1
0

R1
0
tx � ty � f(tx; ty)dtxdty Cov(Tx; Ty) = E(Tx � Ty)� E(Tx) � E(Ty)

E(Txy) + E(Txy) = E(Tx) + E(Ty)
V ar(Txy) + V ar(Txy) = V ar(Tx) + V ar(Ty)� 2 [(E(Tx)� E(Txy)) (E(Ty)� E(Txy))]
Cov(Txy; Txy) = Cov(Tx,Ty) + [E(Tx)� E(Txy)]� [E(Ty)� E(Txy)]

if Tx & Ty independent
=

�
o
ex �

o
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��
o
ey �

o
exy

�
Statuses Involving the Order of Death: Contingent Probabilities for Independent Lives

tq1
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=
R t
0
Pr (Ty > Tx j Tx = u) fx(u)du =

R t
0 upy upx�x+udu;

tq2
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=
R t
0
Pr (Tx < Ty j Ty = u) fy(u)du =

R t
0 uqx upy�y+udu tq1

xy
+ tq

x
1
y
= tqxy tq2

xy
+ tq

x
2
y
= tqxy

Symmetric Relation between Joint and Last Survivor Continuous Insurance
Axy +Axy = Ax +Ay

similar relations hold for n-year term, pure endowment, and endowment insurances.
Covariance between Joint and Last Survivor Bene�ts
Cov(vTxy ; vTxy ) = Cov(vTx ; vTy ) +

�
Ax �Axy

� �
Ay �Axy

�
Similar relations hold for n-year term, pure endowment, and endowment insurances.
1. Relation between Insurances and Annuities

axy =
1�Axy
�

; axy =
1�Axy
�

��
axy =

1�Axy
d

;
��
axy =

1�Axy
d

Similar relations hold for n-year endowment insurances and annuities.
2. Fully Discrete Insurances and Annuities
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h
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h
vK

�
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i
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1P
k=1

vk k�1j qxy = Ax +Ay �Axy
3. Reversionary Annuities (payment only when one life fails until the other also fails)

Payment to (y) when (x) has failed: axjy =
1P
k=1

vk (kqx �k py) =
1P
k=1

vk (kpy �k pxy) = ay � axy

n-yrs (at most) pmt to (x) when (y) has failed: ayjx:nq =
nP
k=1

vk (kqx �k py) =
nP
k=1

vk (kpy �k pxy) = ay:nq � axy:nq

Continuous Payment to (y) when (x) has failed: axjy =
R1
0
vk (tqx �t py) dt =

R1
0
vt (tpy �t pxy) dt = ay � axy
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ayjx
��
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=
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��
axy

: tV (ayjx) =

8<: ay+tjx+t � P (ayjx) �
��
ax+t:y+t both survives

ax+t if (x) survives and (y) fails
0 since contract expired if (x) fails and (y) survives

axy = axjy + ayjx + axy
4. Contingent Insurance
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0
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0
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5. m-thly payable multiple life bene�ts

under UDD:
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non-UDD (Woolhouse formula):
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Premiums and Reserves
Pxy =

Axy
��
axy

Pxy =
Axy
��
axy

tVxy = Ax+t:y+t � Pxy �
��
ax+t:y+t

tVxy =

8><>:
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��
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Dependent Life Models - Common Shock Model
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�
x+t + �

c
t
if constant common force

= ��x+t + � �y+t = �
�
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An Exponential Common Shock Model with Constant Force of Transitions (From ACTEX MLC manual)
Tx � Exp(��x + �); Ty � Exp(��y + �); Txy � Exp(��x + ��y + �)

Ax =
��x + �

��x + �+ �
Axy =

��x + �
�
y + �

��x + �
�
y + �+ �

axy =
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��x + �
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y + �+ �

Axy = Ax +Ay �Axy

Chapter 13 MQR Multiple Decrement Models: Theory
OBJECTIVES: 1.To understand the concept of a multiple decrement table
2.To understand the force of decrement
3.To construct a multiple decrement model using associated single decrements and to apply various assumptions to

calculate rates for discrete jumps.

13.1 Discrete Multiple Decrement Models

q
(�)
x = q

(1)
x + q

(2)
x + : : :+ q

(m)
x =

mP
j=1

q
(j)
x (13.1) p

(�)
x = 1� q(�)x (13.2)

np
(�)
x = 1� nq

(�)
x (13.7e) `

(�)
x+n = `

(�)
x � np(�)x (13.7f)

`
(�)
x =

mP
j=1

`
(j)
x (13.6) d

(j)
x = `

(�)
x � q(j)x (13.7a)

d
(�)
x =

mP
j=1

d
(j)
x = `

(�)
x � q(�)x (13.3 & 13.7b) nd

(j)
x =

n�1P
t=0
d
(j)
x+t = `

(�)
x � nq(j)x (13.4 & 13.7c)
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nd
(j)
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(�)
x � nq(�)x (13.5a & 13.7d) nq
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x = nd

(�)
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(�)
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x (13.5b)

13.1.2 Random Variable Analysis

The joint probability function of K�
x and Jx is Pr (K

�
x = k \ Jx = j) = k�1j q(j)x =

d
(j)
x+k�1

`
(�)
x

(13.8)

The marginal probability functions are

i) Pr (K�
x = k) =

mP
j=1

Pr (K�
x = k \ Jx = j) = k�1j q(�)x =

d
(1)
x+k�1 + :::+ d
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=
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(13.9)

ii) Pr (Jx = j) =
1P
k=1
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x = k \ Jx = j) =
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k=1

d
(j)
x+k�1

`
(�)
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(13.10)

13.2 Theory of Competing Risks nq
0(j)
x � nq

(j)
x (13.11)

13.3 Continuous Multiple Decrement Models
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= �
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�
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Fundamental Relation Between Primed and Unprimed Rates: tp
(�)
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x (13.16)
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0 sp
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d
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tq
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x
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(13.19)

Joint Distribution of Tx and Jx Pr(t < Tx � t+ dt and Jx = j) � tp
(�)
x �

(j)
x+tdt; tq

(j)
x =

R t
0 sp

(�)
x �

(j)
x+s ds.

13.4.1 Uniform Distribution of Decrements in the Multiple Decrement Context
tq
(j)
x = t � q(j)x (13.21) q

(j)
x = tp

(�)
x � �(j)x+t (13.22)

tq
(�)
x = t � q(�)x (13.23) tp

(�)
x = 1� t � q(�)x (13.24)

�
(j)
x+t =

q
(j)
x

tp
(�)
x

=
q
(j)
x

1� t � q(�)x

(13.25) tp
0(j)
x = exp

"
q
(j)
x

q
(�)
x

� ln
�
1� t � q(�)x

�#
=
�
1� t � q(�)x

�q(j)x =q(�)x

(13.26)

13.4.2 Uniform Distribution in the Associated Single- Decrement Tables
tq
0(j)
x = t � q0(j)x (13.27) tp

0(j)
x � �(j)x+t = q

0(j)
x (13.28)

Double decrement case: q(1)x =
R 1
0

�
1� t � q0(2)x

�
� q0(1)x dt = q

0(1)
x

�
1� 1

2
� q0(2)x

�
(13.29a)

q
(2)
x = q

0(2)
x

�
1� 1

2
� q0(1)x

�
(13.29b)

Triple Decrement case: q(1)x = q
0(1)
x

�
1� 1

2

�
q
0(2)
x + q

0(3)
x

�
+
1

3

�
q
0(2)
x � q0(3)x

��
(13.30)

Miscellaneous Results (From ACTEX MLC manual)
1. Assumptions on the single decrement table.
Backing out the Unprimed Rates from Primed Rates

sq
(i)
x =

R s
0 tp

(�)
x �

(i)
x+t dt =

R s
0

"
mQ

j=1; j 6=i
tp
0(j)
x

#
tp
0(i)
x �

(i)
x+t dt

2. Constant Force Assumption for Multiple Decrements For any t 2 [0; 1] and integer-valued x,
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(i) tp
(�)
x =

h
p
(�)
x

it
(survival probability for fractional ages)

(ii) Ratio Property : tq
(i)
x

tq
(�)
x

=
�
(i)
x+s

�
(�)
x+s

for any s 2 [0; 1] (To get unprimed rates from (i) )

(iii) Partition Property : tp
t(i)
x =

h
tp
(�)
x

iq(i)x =q(�)x

(To get primed rates from unprimed rates from (i) )

3. Uniform Distribution of Death (UDD) for Multiple Decrement (MUDD) Table
For any t 2 [0; 1] and integer-valued x,

(i) tp
(�)
x �

(i)
x+t = q

(i)
x or equivalently �(i)x+t =

q
(i)
x

1� tq(�)x

for t 6= 1

(ii) Ratio Property : tq
(i)
x

tq
(�)
x

=
�
(i)
x+s

�
(�)
x+s

for any s 2 [0; 1]

(iii) Partition Property : tp
0(i)
x =

h
tp
(�)
x

iq(i)x =q(�)x

(To get primed rates from unprimed rates tq
(i)
x and tp

(�)
x )

Discrete jumps: Handling Both Discrete and Continuous Decrement

1) sq
(i)
x =

R s
0

"
mQ

j=1; j 6=i
tp
0(j)
x

#
tp
0(i)
x �

(i)
x+tdt holds when decrement i is continuous.

2) sq
(i)
x =

P
tk� s

"
mQ

j=1; j 6=i
tkp

0(j)
x

#
�(tkq

0(i)
x ) holds when decrement i is discrete

. Here tk are the jump times and �
�
tkq

0(i)
x

�
is the jump size at time tk:

Chapter 14 MQR Multiple Decrement Models: (Applications)
14.1 Actuarial Present Value
Ax =

1P
k=1

vk � Pr(K�
x = k) (14.1) A

(j)
x =

1P
k=1

vk � Pr(K�
x = k \ Jx = j) (14.2)

If the time and cause of decrement are independent,

A
(j)
x =

1P
k=1

vk � Pr(K�
x = k) � Pr(Jx = j) (14.3a) or A(j)x =

1P
k=1

vk� k�1p(�)x � q(j)x+k�1 (14.3b)

For bene�t paid at the instant of failure A
(j)

x =
R1
0
vt� tp(�)x � �(j)x+t dt (14.4)

14.2 Asset Shares [0AS +G(1� r1)� e1] (1 + i) = b(1)1 � q(1)x + b
(2)
1 � q(2)x + 1AS � p(�)x ; (14.5a)

so 1AS =
[0AS +G(1� r1)� e1] (1 + i)� b(1)1 � q(1)x � b(2)1 � q(2)x

p
(�)
x

: (14.5b)

In general, [k�1AS +G(1� rk)� ek] (1 + i) = b(1)k � q(1)x+k�1 + b
(2)
k � q(2)x+k�1+ kAS � p(�)x+k�1; (14.6a)

so kAS =
[k�1AS +G(1� rk)� ek] (1 + i)� b(1)k � q(1)x+k�1 � b

(2)
k � q(2)x+k�1

p
(�)
x+k�1

: (14.6b) Uk = kAS� kV
G: (14.7)

14.3 Non-Forfeiture Options
14.3.1 Cash Value tCVx
14.3.2 Reduced Paid-up Insurance

RPU =
tCVx
Ax+t

; (14.8) tWx =
tVx
Ax+t

; (14.9)

14.3.3 Extended Term Insurance tCVx = A
1
x+t:ne (14.10) tCVx:ne = A

1
x+t:n�te +PE� n�tEx+t; (14.11)

14.4 Multi State Model Representation
14.4.2 The Total and Permanent Disability Model
hA

(f)

x =
R1
0
vr� rp(�)x � �(j)x+r dr (14.12a) hA

(f)

x =
R1
0
vr� rp(0)11 � �13(r) dr (14.12b)

dAx+r =
R1
0
vs� spdx+r � �dx+r+s ds (14.13a) dAx+r =

R1
0
vs� sp(r)22 � �23(s) ds (14.13b)

hA
d

x =
R1
0
vr �r p(�)x � �(d)x+r �d Ax+rdr =

R1
0
vr �r p(�)x � �(d)x+r

�R1
0
vs � s pdx+r � �dx+r+s ds

�
dr (14.14a)

hA
d

x =
R1
0
vr� rp(0)11 � �12(r)

�R1
0
vs � s p(r)22 � �23(s) ds

�
dr; (14.14b)

hadx =
R1
0
vr �r p(�)x � �(d)x+r �d ax+r dr =

R1
0
vr �r p(�)x � �(d)x+r

�R1
0
vs � s pdx+r ds

�
dr (14.15a)

hadx =
R1
0
vr� rp(0)11 � �12(r)

�R1
0
vs � s p(r)22 ds

�
dr; (14.15b)
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14.4.3 Disability Model Allowing For Recovery f (x+�x) � f(x) + f 0(x) ��x (14.16)

d

dr
rp
(t)
11 = rp

(t)
12 � �12(t+ r)� rp

(t)
11 � �12(t+ r) (at k=2)

+ rp
(t)
13 � �31(t+ r)� rp

(t)
11 � �13(t+ r) (at k of 3)

= rp
(t)
12 � �12(t+ r)� rp

(t)
11 � [�12(t+ r) + �13(t+ r)] ; (14:17)

d

dr
rp
(t)
12 = rp

(t)
11 � �12(t+ r)� rp

(t)
12 � �21(t+ r) (at k=1)

+ rp
(t)
13 � �32(t+ r)� rp

(t)
12 � �23(t+ r) (at k of 3)

= rp
(t)
11 � �12(t+ r)� rp

(t)
12 � [�21(t+ r) + �23(t+ r)] (14:18)

r+�rp
(0)
ij � rp

(0)
ij +

d

dr
rp
(0)
ij � �r (14.19)

r+�rp
(0)
11 � rp

(0)
11 +�r

n
rp
(0)
12 � �21(r)� rp

(0)
11 � [�12(r) + �13(r)]

o
; (14.20)

r+�rp
(0)
12 � rp

(0)
12 +�r

n
rp
(0)
11 � �12(r)� rp

(0)
12 � [�21(r) + �23(r)]

o
; (14.21)

14.4.5 Thiele�s Di¤erential Equation in the Multiple Decrement Case

�a
(�)
x =

R1
0
vr� rp(�)x dr (14.22) �P =

APV B

�a
(�)
x

=
APV Tx

�a
(�)
x

=

Pm
j=1APV

(j)
x

�a
(�)
x

(14.23)

d�ax+t =
R1
0
vs� spdx+t dr (14.24)

d

dt
h
t V = �P + �� ht V � �

(f)
x+t

�
1�ht V

�
� �(d)x+t

�
d
tV � h

t V
�
: (14.25)

d

dt
d
tV = �� dtV � 1� d�

(f)
x+t

�
1�dt V

�
� d�

(r)
x+t

�
h
t V � d

tV
�

(14.26)
h
t V � t�

h
�tV

�t
� �P + �� ht V � �

(f)
x+t

�
1� h

t V
�
� �dx+t

�
d
tV � h

t V
�
;

or t�
h
�tV �ht V ��t

n
�P + � �ht V � �

(f)
x+t

�
1� h

t V
�
� �dx+t

�
d
tV � h

t V
�o

(14.27)

t�
d
�tV � d

tV ��t
n
� �dt V � 1� d�

(f)
x+t

�
1� d

tV
�
� d�

(r)
x+t

�
h
t V � d

tV
�o

(14.28)

14.5 De�ned Bene�t (DB) Pension Plans
14.5.1 Normal Retirement (NR) Bene�ts
Projected Annual Bene�t PABz = 0:01p � Y OSz � FASz (14.29)

Final Annual Salary FASz =
1

3

�
Sz�3 + Sz�2 + Sz�1

Sx

�
� CASx (14.30)

Projected Aggregate Salary PASz =
1

Sx

z�1P
k=x

Sk � CASx (14.31)

Projected Annual retirement Bene�t: PABz = 0:01p � PASz (14.32)
APV of the projected bene�t, at age x: APV NRx = PABz � vz�x� z�xp(�)x � r�a(12)z : (14.33)
14.5.2 Early Retirement (ER) Bene�ts

APV ER35 =
64P
y=60

PABy+1=2 �
�
1� 0:05

�
65� y � 1

2

��
� vy+1=2�35� y�35p(�)35 � q

(r)
y � r�a(12)y+1=2 (14.34)

14.5.3 Withdrawal and other Bene�ts
Assuming a 5-year vesting rule and assuming employees take their withdrawal bene�t at NRA, the APV at age 35 is

APVW35 =
59P

y=35+5
PABy+1=2 � v30� y�35p(�)35 � q

(w)
y � w65�y�1=2py+1=2� r�a

(12)
65 (14.35)

14.5.4 Funding and Reserving

Normal Cost (Early Age) NCEANx =
APV Tx

�a
(�)
x:z�xe

(14.36)

tV
T
x = APV Tx+t �NCEANx � �a(�)x+t: z�x�te (14.37a) or retrospectively as tV

T
x = NCEANx � �s(�)x: te (14.37b)

APV of the bene�t accrued between ages x and x+1: APV NRx = (ABx+1 �ABx) �vz�x� z�xp(�)x � r�a(12)z (14.38)
14.5 Gain and Loss Analysis
Pro�t with all anticipated factors:

P (0) = [tV +G (1� rt+1)� et+1] (1 + it+1)�
h�
b
(1)
t+1 + s

(1)
t+1

�
� q(1)x+t +

�
b
(2)
t+1 + s

(2)
t+1

�
� q(2)x+t + p

(�)
x+t � t+1V

i
(14.39)

Pro�t with some actual experience in place of anticipated factors:
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P (1) = (14:39) with all anticipated factors except actual value for 1 factor.
P (2) = (14:39) with all anticipated factors except actual value for 2 factors
P (3) = (14:39) with all anticipated factors except actual value for 3 factors.
P (4) = (14:39) with all anticipated factors except actual value for 4 factors.

Gain from factor whose gain is calculated �rst is GF1 = P (1)� P (0) (14.40a)
Gain from factor whose gain is calculated second is GF2 = P (2)� P (1) (14.40b)
Gain from factor whose gain is calculated third is GF3 = P (3)� P (2) (14.40c)
Gain from factor whose gain is calculated fourth is GF4 = P (4)� P (3) (14.40d)
Gain from factor whose gain is calculated kth is GFk = P (k)� P (k � 1)
Total gain GT = GF1 +GF2 +GF3 +GF4 = P (4)� P (0) (14.41) Total gain GT =

Plast
k=1G

Fk = P (last)� P (0)
When death occurs throughout year but withdrawal only at end of year, the anticipated pro�t expression is

P (0) = [tV +G (1� rt+1)� et+1] (1 + it+1)�
h�
b
(1)
t+1 + s

(1)
t+1

�
� q0(1)x+t +

�
b
(2)
t+1 + s

(2)
t+1

��
1� q0(1)x+t

�
� q0(2)x+t + p

(�)
x+t � t+1V

i
(14.42)

ACTEX MLC Chapter 9 Study Manual Vol II Multiple Decrement Models:Applications
Thiele�s Di¤erential Equation under Multiple Decrement
d tV

g

dt
= Gt(1� ct)� et +

�
� + �

(�)
x+t

�
tV

g �
nP
j=1

�
b
(j)
t + E

(j)
t

�
�
(j)
t

Recursive Relation for Expected Asset Shares
[hAS +Gh (1� ch)� eh] (1 + i) = p(�)x+h h+1AS + q

(1)
x+h h+1CV + q

(2)
x+h bh+1

Chapter 15 MQR Models with Variable Interest Rates
15.4 Forward Interest Rates (1 + y5)

5
= (1 + y1)

1 � (1 + f1;4)4 : (15.1)
(1 + y4)

4
= (1 + y2)

2 � (1 + f2;2)2 (15.2) (1 + yk)
k � (1 + fk;5�k)5�k = (1 + y5)k+5�k = (1 + y5)5. (15.3)

(1 + y2)
2 = (1 + f1;1) (1 + f0;1)

Chapter 12 ACTEX MLC Study Manual Vol II Interest Rate Risk

Spot interest rate v(t) = (1 + yt)
�t Forward interest rate (1 + ft;k)

k
=
(1 + yt+k)

t+k

(1 + yt)
t =

v(t)

v(t+ k)

Chapter 16 MQR Universal Life Insurance
16.2 Indexed Universal Life Insurance.
a) Point-to-point method: iP =

Final Index Closing Value
Initial Index Closing Value

� 1; (16.1)

b) Monthly average method: iMA =
1
12

P
Monthly Index Closing Values
Initial Index Closing Value

� 1: (16.2)

16.3 Pricing Considerations
Mortality rate, Lapse rate, Expenses, Investment Income.
Double decrement model: p(�)x = 1� q(�)x = 1� q(d)x � q(w)x : (16.3)

Withdrawal at end of year only: p(�)x =
�
1� q(d)x

��
1� q(w)x

�
: (16.4)

Pricing for Secondary Guarantees: a) Stipulated premium method, b) Shadow fund method.

16.4 Reserving Considerations
ULI Universal Life Insurance. Policy is marked by (a) extensive policyholder choice,

(b) policyholder participation in interest rate risk, and (c) secondary guarantee features of coverage
V UL Variable Universal Life insurance. Separate investment accounts for net contributions.
EIUL Equity-Indexed Universal Life insurance. Interest/investment is credited to contract at rate that

depends on some published stock index such as SP500, DJIA, or EAFE index
SCt Surrender Charge at time t.
M&Et Mortality and Expenses Charge at time t.
NARt Net Amount at Risk at time t.
AVt Account Value at time t.
CVt Cash Value at time t. (CVt = AVt � SCt)
NAIC National Association of Insurance Commissioners
PG Policy Guarantees (Guarantees given as part of an insurance policy).
GMP Guaranteed Maturity Premium. Level gross premium su¢ cient to endow the policy at its maturity

date based on the policy guarantees of premium loads, interest rates, and expense and mortality charges.
GMF Guaranteed Maturity Funds. Calculated based on the roll forward of the GMP and the policy guarantees.
GDB Guaranteed Death Bene�ts.
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GMB Guaranteed Maturity Bene�ts.
PV FBt Present Value at time t of the projected Future Bene�ts.
PV FPt Present Value at time t of the Future GMP stream.
CRVM Commissioner�s reserve valuation method
CSVt Cash Surrender Value at time t.
AMR Alternative Minimum Reserves.
Roll Forward =bring a �nancial value forward to the future .

16.4.1 Basic Universal Life (ULI)
Process for 1983 NAIC regulation to de�ne a minimum reserving standard for UL products.
a) At policy issue,

1. a guaranteed maturity premium (GMP ) is calculated as the level gross premium su¢ cient to endow the policy at
its maturity date. The GMP is based on the policy guarantees of premium loads, interest rates, and expense
and mortality charges.

GMP0 is policy guarantees of f(premium loads; i, M&E).

2. a sequence of guaranteed maturity funds (GMF) is calculated based on the roll forward of the GMP and the
policy guarantees

a sequence GMF=roll forward of f(GMP , policy guarantees).

b) At the valuation date, t,

3. actual AVt determined by the account value roll forward process.

ULI with variable failure bene�t B +AVt (11.25c): AVt = [AVt�1 +Gt(1� rt)� et � vtqx+t�1:B] (1 + it)

ULI with �xed failure bene�t (11.26b): AVt = [AVt�1 +Gt(1� rt)� et] (1 + it)� qx+t�1:(B �AVt)

(11.27) AVt =
[AVt�1 +Gt(1� rt)� et] (1 + it)� qx+t�1:B

px+t�1

4. the ratio of the actual account value to the GMF is calculated as rt =
AVt
GMFt

; rt � 1 (16.5)

5. max(AVt; GMFt) is projected forward based on the GMP and the policy guarantees. This produces a sequence of
GDB and GMB.

6. PV FBt and PV FPt are calculated using valuation assumptions. Then the pre-�oor CRVM reserve is de�ned as

tV
pre�floor CRVM = rt(PV FBt � PV FPt) (16.6) with rt as de�ned above.

7. tV floor CRVM = max( 12 -month term reserve based on minimum valuation mortality and interest, CSVt).

8. tV final CRVM = max( tV
pre�floor CRVM ; tV

floor CRVM ):

The regulation also de�nes alternative minimum reserves (AMR).

1. the valuation net premium is calculated at policy issue (t = 0) based on the GMP and the policy guarantees.

2. If the GMP < the valuation net premium (VNP),

the reserve held =max(a; b)

where a =the reserve calculated using the actual method and assumptions of the policy + VNP,

b= the reserve calculated using the actual method but with minimum valuation assumptions + GMP).

16.4.1 Indexed Universal Life (eIUL)
NAIC Actuarial Guideline 36 (AG 36) speci�es the valuation standards for IUL contracts. 3 computational meth-

ods:
1) The implied guaranteed rate (IGR) method: which requires insurers to satisfy the hedged-as-required crite-
ria.These criteria set forth a strenuous constraint requiring exact, or nearly exact, hedging, as well as an indexed
interest-crediting term of not more than one year.
2) The CRVM with updated market value (CRVM/UMV) method:
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must be used if the contract has an indexed interest-crediting term of more than one year, or if the renewal partici-
pation rate guarantee gives an implied guaranteed rate greater than the maximum valuation rate. This method can be
volatile when market conditions change.
(3) The CRVM with updated average market value (CRVM/UAMV) method:
is a hybrid of the other two, designed for an insurer who quali�es for the �rst method above but does not wish

to satisfy the hedged-as-required criteria.
The CRVM/UMV method has calculation steps as follows:
a) The issue date (t = 0) calculations are as follows:

1. An implied guaranteed interest rate (IGR) for the duration of the initial term,

is the guaranteed rate plus the accumulated option cost expressed as a percentage of the policy value to
which the indexed bene�t is applied. In turn, the accumulated option cost is the amount needed to provide
the index-based bene�t in excess of any other interest rate guarantee, accumulated to the end of the initial term
at the appropriate maximum valuation rate.

2. An implied guaranteed rate for the period after the initial term.

3. The GMP, GMF, and valuation net premium based on the implied guaranteed rate.

b) The valuation date (t = t) calculations are as follows:

1. The implied guaranteed rate for the remainder of the current period, using the option cost based on the market
conditions at the valuation date.

2. The implied guaranteed rate for the period following the current period, based on the option cost on the valuation
date.

3. A re-projection of future guaranteed bene�ts based on the implied valuation date.

4. The present value of the re-projected future guaranteed bene�ts.

Note that the GMP, GMF, and valuation net premium remain the same as calculated at issue (t = 0).

16.4.4 Contracts with Secondary Guarantees

NAIC Actuarial Guideline 38 (AG 38) for reserves for UL products with secondary guarantees have 9 steps as follows:

1. The minimum gross premium required to satisfy the secondary guarantees is derived at issue (t = 0) of the
contract; the value of this premium will depend on whether the stipulated premium or the shadow fund method is
in use. Its calculation uses the policy charges and credited interest rate guaranteed in the contract.

2. The basic and de�ciency reserves for the secondary guarantees are calculated using the minimum gross pre-
mium described in Step (1).

3. The amount of actual contributions made in excess of the minimum gross premiums is determined, again
with the process depending on whether the stipulated premium method or the shadow fund method is used.

4. At the valuation date, t, a determination is made regarding amounts needed to fully fund the secondary
guarantee.

(a) Under the shadow fund method, this would be the amount of the shadow fund account needed to fully fund
the guarantee.

(b) Under contracts not using the shadow fund method, this would be the amount of cumulative premiums paid
in excess of the required level such that no future premiums are required to fully fund the guarantee.

Special rules apply to policies for which the secondary guarantee cannot be fully funded in advance. Here a
prefunding ratio, r, (r � 1), is calculated that measures the level of prefunding for the secondary guarantee,
and is eventually used in the calculation of reserves. It is de�ned as

r =
Excess Payment

Net Single Premium Required to Fully Fund the Guarantee
: (16.7)

5. At the valuation date, t, the net single premium for the secondary guarantee coverage for the remainder of the
secondary guarantee period is computed. NSPt.
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6. A net amount of additional premiums is determined by multiplying the prefunding ratio described in Step (4)
times the di¤erence between the net single premium of Step (5) and the basic plus de�ciency (if any) reserve of
Step (2). r(NSPt �bpdt V )

7. A reduced de�ciency reserve is determined by multiplying the de�ciency reserve (if any) by the complement
of the pre-funding ratio from Step (4). red dtV = (1� r)dtV

8. Then the actual reserve is the lesser of (a) the net single premium of Step (5), or (b) the amount in Step (6)
plus the basic and de�ciency (if any) reserve from Step (2). This result might be reduced by applicable policy
surrender charges. actualtV = min(NSPt; Step6 + Step2)

9. An increased basic reserve is computed by subtracting the reduced de�ciency reserve of Step (7) from the
reserve computed in Step (8), which then becomes the basic reserve. incr btV =actualt V �red dt V:
Also AG38tV =actualt V +red dt V

ACTEX MLC Chapter 14 Study Manual Vol II Universal Life Insurance
14.1 Basic Policy Design
Account Value Accumulation AVt = (AVt�1 + Pt � ECt � Colt) (1 + ict)
ULI with variable failure bene�t (11.25c) AVt+1 = [AVt +Gt+1(1� rt+1)� et+1 � vt+1qx+1:B] (1 + it+1)
ULI with �xed failure bene�t (11.26b) AVt+1 = [AVt +Gt+1(1� rt+1)� et+1] (1 + it+1)� qx+1:(B �AVt+1)

(11.27) AVt+1 =
[AVt +Gt+1(1� rt+1)� et+1] (1 + it+1)� qx+1:B

px+t
14.2 Cost of Insurance and Surrender Value
Total Death Bene�t
Speci�ed Amount (Type A): max (FA; 
t AVt)
Speci�ed Amount plus the Account Value (Type B): max (AVt +X; 
tAVt)

Additional Death Bene�t
Speci�ed Amount (Type A): ADBt = max (FA�AVt; (
t � 1)AVt)
Speci�ed Amount plus the Account Value (Type B): ADBt = max (X; (
t � 1)AVt)
General Formula for the cost of Insurance CoIt = q�t � vq �ADBt
where CoIt is the cost of insurance for the tth time period, deducted from the account value at time t� 1,
q�t is the death probability (for the t

th time period) used to calculate the cost of insurance,
vq is the discount factor for discounting the cost of insurance to time t� 1,
ADBt is the additional death bene�t at time t.

Cost of Insurance for a Speci�ed Amount (Type A) Policy
CoIt = max

�
CoIft ; CoI

c
t

�
where CoIft =

q�t vq (FA� (AVt�1 + P � ECt) (1 + ict))
1� q�t vq (1 + ict)

CoI =
q�t vq (1 + i

c
t) (
t � 1) (AVt�1 + P � ECt)

1 + q�t vq (1 + i
c
t) (
t � 1)

Cost of Insurance for a Speci�ed Amount plus the Account Value (Type B) Policy
CoIt = max

�
CoIft ; CoI

c
t

�
where CoIft = q

�
t vqX and CoIct =

q�t vq (1 + i
c
t) (
t � 1) (AVt�1 + P � ECt)

1 + q�t vq (1 + i
c
t) (
t � 1)

14.5 Pro�t Testing
Expected Pro�t: Prt = (AVt�1 + P � ECt) (1 + iet )� EDBt � ESBt � EAVt

Chapter 17 MQR Deferred Variable Annuities
17.2 Deferred Annuity Products
17.2.2 Variable Deferred Annuity

Investment Advisory Fee: IAFt(n) = FVt�1(n) �
h
(1 + IAFt(n))

1=365 � 1
i
: (17.1)

Net Investment Rate for day t : NIFt(n) =
NIIt(n)� IAFt(n) +RCGt(n) + UCGt(n)

FVt�1(n)
; (17.2)

Net Investment Factor: NIFt(n) = 1 +NIRt(n): (17.3)
Sub-account n Fund Value recursion: FVt(n) = FVt�1(n) �NIFt(n)� EXPt(n); (17.4)
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Overall contract Account Value on day t : AVt =
P
n
FVt(n): (17.5)

17.2.3 Equity -Indexed Deferred Annuity

a) point-to-point: iP =
Index value on closing day of index period
Index value on initial day of index period

� 1; (17.6)

b) monthly ave: iMA =
1
12n [Sum of index values on the last day of each month during index period]

Index value on initial day of index period
� 1:

(17.7)

c) with ratcheting iP =
Index value on closing day t of index period
Index value on day t� 1 of index period � 1;

d) with ratcheting iMA =
1
12n [Sum of index values on the last day of each month during index period]

Index value on previous day t� 1 of index period � 1:

17.3 Immediate Annuity Products

17.3.2 Variable Immediate Annuity APU =
P1

PUV1
: (17.8)

PUVt = PUVt�1

�
NIFt
1 +AIR

�
; (17.9) Pt = (APU) (PUVt) : (17.10)

Pt = (APU) (PUVt�1)

�
NIFt
1 +AIR

�
= Pt�1

�
NIFt
1 +AIR

�
: (17.11)

ACTEX MLC Chapter 13 Pro�t Testing
Pro�t vector Pr = (Pr0; Pr1; Pr2; Pr3 ::::)

0

Pro�t signature � = (�0; �1; �2; �3; ::::)
0 = (Pr0; Pr1; px Pr2; 2px Pr3; ::::)

0

Expected pro�t that emerges in (h+ 1)th year
Prh+1 = N [(hV

g +Gh(1� ch)� eh) (1 + i)� (bh+1 + Eh+1)qx+h + px+h h+1V
g]

= N [(Gh(1� ch)� eh)(1 + i)� (bh+1 + Eh+1)qx+h + (1 + i)hV g � px+h� h+1V g] (1)
Pr1 =equation (1) without acquisition cost. Pr0 = � all acquisition costs
Extension to Multiple State Models (assuming N = 1)

Pr
(j)
h+1 = [hV

(j) +G
(j)
h (1� c

(j)
h )� e

(j)
h ](1 + i)�

nP
k=0

(b
(jk)
h+1 + E

(jk)
h+1+ h+1V

(k))pjkx+h

� = (�0; �1; �2; ::::)
0; �t =

nP
k=0

t�1p
0k
x Pr

(j)
t �0 = Pr

(0)
0 ;

�1 =
nP
k=0

0p
0k
x Pr

(j)
t = 0p

00
x Pr

(0)
1 = Pr

(0)
1

Traditional Insurance Policies with Withdrawal (assuming N = 1)
Pr

(0)
h+1 = [vV

(0) +Gh(1� ch)� eh](1 + i)� [h+1V (0)p(�)x+h+ h+1CV q
(1)
x+h + (bh+1 + Eh+1)q

(2)
x+h] h � 0 and

Pr
(1)
h+1 = 0; Pr

(2)
h+1 = 0; h � 1 Pr

(0)
0 = � acquisition costs

�h = h�1p
(�)
x Pr

(0)
h ; h � 2; �1 = Pr

(0)
1 ; �0 = Pr

(0)
0

Extension to Policies with Continuous Bene�t (assuming N = 1)
Prh+1 = [hV

g +Gh(1� ch)� eh](1 + i)�
�
(1 + i)1=2(bh+0:5 + Eh+0:5)qx+h + px+h h+1V

g
�
:

13.2 Pro�t Measures
1. Net present value (NPV): NPV (r) =

nP
k=0

Ck
(1 + r)k

:

If the NPV > 0, then the investment is deemed pro�table.
2. Internal rate of return (IRR): The internal rate of return is the zero of the equation

NPV (r) =
nX
k=0

Ck
(1 + r)k

= 0:

3. Discounted payback period (DPP)
Given the hurdle rate r, the discounted payback period (also known as the break-even period) is the smallest

value of m such that
mP
k=0

Ck
(1 + r)k

� 0.

DPP is the time until the investment starts to make a pro�t.
4. Pro�t margin
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Pro�t margin is the NPV of the net cash �ows as a percentage of the NPV of the revenues. Suppose that

the revenue cash �ows are R0; R1; R2; :::Rn. Then the pro�t margin is
NPV (r)
nP
k=0

Rk
(1 + r)k

For life insurance, Ck = �k; Rk = Gk kpx; NPV is expected present value of the pro�ts at issue and premiums as
revenues (mortality rate taken into account).

Pro�t margin =
NPV (r)
nP
k=0

Gk kpx
(1 + r)k

=

nP
k=0

�k
(1 + r)k

nP
k=0

Gk kpx
(1 + r)k

5. NPV as a proportion of the acquisition costs =
1

�0
NPV (r) =

1

�0

nP
k=0

�k
(1 + r)k

:

11


