King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics

MATH 302, Semester 153 (2015-2016)

EXAM II

Wednesday, August 10, 2016

Allowed Time: 2 Hours

Student Name: Student ID Number: Section Number: 01 Instructor's Name: A. N. Duman

Instructions:

1. Write neatly and legibly -- you may lose points for messy work.

2. Show all your work -- no points for answers without justification.

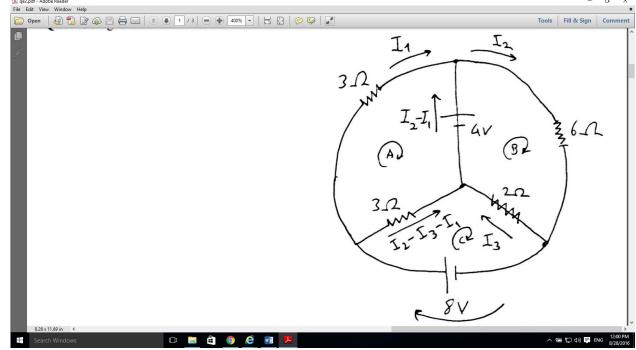
3. Programmable Calculators and Mobiles are <u>not</u> allowed.

4. Make sure that you have 5 different problems (5 pages + cover page).

Problem No.	Points	Maximum Points
1		20
2		20
3		25
4		15
5		20
Total:		100

Coordinator: Dr A. N. Duman

- **Q1.** (a) Determine whether, $S = \{\langle x, y, z \rangle \mid x^2 yz \ge 0\}$ is a subspace of \mathbb{R}^3 ? [5 pts]
 - (b) Find a basis and for the subspace, $S = \{ \vec{v} \in \mathbb{R}^4 \mid \vec{a} \cdot \vec{v} = 0 \text{ and } \vec{b} \cdot \vec{v} = 0 \}$ of \mathbb{R}^4 where $\vec{a} = \langle 1,0,1,1 \rangle$ and $\vec{b} = \langle 0,0,1,2 \rangle$. What is the dimension of this subspace? [15 pts]



Q2. Using Gaussian elimination, find the currents in all branches of the circuit below. [20 pts]

Q3. (a) Consider the system of non-homogenous linear algebraic equations,

If the system is inconsistent, what are the possible values of *a*? [15 pts]

(b) Let A be 4×6 matrix. If the solution of the system AX = B has 2 parameters, what is **rank**(A) and **rank**(A|B)? [5 pts]

(c) Determine whether
$$A = \begin{pmatrix} 1 \\ 1 \\ 0 \\ -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix}$, $C = \begin{pmatrix} 1 \\ 0 \\ 3 \\ 2 \end{pmatrix}$ are linearly independent.
[5 pts]

Q4. (a) Find $(AB)^{-1}$, if

$$A = \begin{pmatrix} 2 & -1 & 1 \\ 3 & 0 & -1 \\ 1 & 2 & -1 \end{pmatrix}, B^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

[10 points]

(b) Solve the system
$$(AB)X = C$$
 , where $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, $C = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$.

[5 points]

Q5. (a) Find the orthogonal matrix P that diagonalises the matrix A, where

$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$

(b) Find P^{-1} (c) Find $P^T A P$? [10 points] [5 points] [5 points]