King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics MATH 301 EXAM I 2016 (153)

Saturday, July 30, 2016	Allowed Time: 2 Hours
Name:	
ID Number:	Serial Number:
Section Number:	Instructor's Name:
Instructions:	
1. Write neatly and legibly. You n	nay lose points for messy work.
2. Show all your work. No points	s for answers without justification.
3. Programmable Calculators as	nd Mobiles are not allowed.
4. Make sure that you have 8 diffe	erent problems (8 pages + cover page).

Problem No.	Points	Maximum Points
1		10
2		11
3		12
4		16
5	H1	12
6		9
7		19
8		11
Total:		100

Q1. Let $G(x, y, z) = x^2 z^{-2} - y^2 z^{-2}$. Find the directional derivative of G(x, y, z) at the point (2, 4, -1) in the direction of v = i - 2j + k.

$$D_{v}G = \nabla G \cdot \frac{1}{|v|} \quad (2)$$

$$\nabla G = \left(2 \times Z^{2}, -2 y Z^{2}, -2 Z^{3} (x^{2} - y^{2})\right) \quad (3)$$

$$\nabla G(2, 4, -1) = \left(4, -8, -24\right) \quad (2)$$

$$\frac{\mathbf{v}}{|\mathbf{v}|} = \frac{1}{\sqrt{8}} (1, -2, 1) \quad (2)$$

$$DG = \frac{1}{\sqrt{6}}(4 + 16 - 24)$$

$$= \frac{4}{\sqrt{6}} = \frac{-2\sqrt{6}}{3}$$

Q2. Find the length of the curve given by $r(t) = e^t \cos 2t \ \mathbf{i} + e^t \sin 2t \ \mathbf{j} + e^t \ \mathbf{k}$, $0 \le t \le 3\pi$.

length =
$$\int_{0}^{2\pi} ds = \int_{0}^{2\pi} \sqrt{\frac{dx}{dt}} \frac{dy}{dt} + \frac{dy}{dt} \frac{dy}{dt} = e^{t} \cos 2t + 2e^{t} \cos 2t$$

$$\frac{dy}{dt} = e^{t} \sin 2t + 2e^{t} \cos 2t$$

$$\frac{dz}{dt} = c^{t}$$

Q3. On the unit sphere, the gravitational attraction force between a mass m_1 at the origin and a mass m_2 at the sphere is given by the vector field $\mathbf{F} = -\mathbf{c}(y z \mathbf{i} + x z \mathbf{j} + x y \mathbf{k})$ where \mathbf{c} is a positive constant and (x, y, z) is the coordinate of m_2 .

ii) Verify that $\emptyset(x, y, z) = -c xyz$ is a potential of the vector field **F**.

$$A_{x} = -CJZ = P \qquad 0$$

$$A_{y} = -CXZ = Q \qquad 0$$

$$A_{z} = -CXJ = R \qquad :: F = \nabla P$$

iii) Evaluate the work done by the force F in moving a mass m_2 from the point $A(\frac{1}{2}, \frac{1}{2}, \frac{1}{\sqrt{2}})$ to the point B(1,0,0).

$$\begin{aligned}
&\text{work} = \int_{A}^{B} F \cdot dr = (2) \\
&= \varphi(1,0,0) - \varphi(\frac{1}{2},\frac{1}{2},\frac{1}{\sqrt{2}}) (2) \\
&= \circ + C(\frac{1}{2}(\frac{1}{2})(\frac{1}{2})) \\
&= C \\
&= C
\end{aligned}$$

Q4. Evaluate the line integral

on the given curve between (0,0,0) to (6,8,5).

$$S_{C_3} y dx + z dy + x dz = S_5(8) dt = 40 ②$$

Q5. Use **Green's Theorem** to evaluate $\oint_C 2y^2dx + x^2y dy$, where *C* consists of the boundary of the shaded region *R* with a counterclockwise orientation.

Q6. Find the surface area of the portion of the cone $z = \sqrt{x^2 + y^2}$ inside the cylinder

Then area =
$$SS_{R} \sqrt{2} dA$$
 (1)
$$= \sqrt{2} SS_{R} dA$$

$$= \sqrt{2} TT (1)^{2}$$

$$= \sqrt{2} TT (1)$$

Q7. Use **Stokes' theorem** to evaluate $\oint_C z^2 x \, dx + z \, e^x \, dy + x \, dz$ where C is the curve of intersection of the plane y = 1 and the sphere $x^2 + y^2 + z^2 = 4$, by finding a surface S with C as its boundary and such that the orientation of C is counterclockwise as viewed from above.

$$I = \begin{cases} f \cdot dr = \end{cases} \begin{cases} \text{curl } F \cdot n \quad d, \end{cases} \end{cases}$$
where
$$f = \begin{cases} z^2x, ze^x, x \end{cases}$$

$$\text{curl } F = \begin{vmatrix} i & j & k \\ -ix & jy & jz \\ -ix & ze^x & n \end{vmatrix} = (e^x, 2zx-1, ze^x) \end{cases}$$

$$n = \frac{\nabla g}{||z||} \text{ where } g = g - 1 \text{ } 0 \text{ } y \text{ } 1 \text{ } 1 \text{ } 1 \text{ } 2 \text{ } 2$$

$$n = (0, 1, 0)$$

Curl
$$F.n = 22x - 1$$
 (1)

$$I = SS(2 Z X - 1) dA \qquad (1)$$

$$= SS(2 Z X - 1) dA \qquad (1)$$

$$= SS(2 Y^{2} sin \theta cos \theta - 1) Y dY d\theta \qquad (4)$$

$$= 2 S^{\sqrt{3}} Y^{3} dY S sin \theta cos \theta d\theta - T (\sqrt{3})^{2}$$

Q8. Let D be the region bounded by the paraboloid $z = x^2 + y^2 + 1$ and the plane

z = 2. Use the **divergence theorem** to find the outward flux $\iint_S (\mathbf{F} \cdot \mathbf{n}) dS$ of the vector field $\mathbf{F} = x \mathbf{i} + y \mathbf{j} + \mathbf{k}$, where S is the boundary of D.