King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics Coordinator: Jawad Abuihlail

Math 201: Final Exam, Summer 153 (180 minutes) — MASTER

Name:

Student ID:

Section: Serial:

Part II	Grade	
Q1		/14
Q2		/14
Q3		/10
Q4		/10
Q5 Q6		/12
Q6		/10
TOTAL		/70

Part I. Choose the correct answer and shade the corresponding bubble in the OMR Sheet (no partial credit):

1. The length of the parametric curve

$$x = \sin^2(t), \ y = \cos^2(t), \ 0 \le t \le \pi$$

is equal to

(a) $2\sqrt{2}$ (b) 4 (c) $2 - 2\sqrt{2}$ (d) $3 + 2\sqrt{2}$ (e) 1

- 2. The slope of the tangent line to the polar curve $r = e^{-\theta}$ at the point corresponding to $\theta = \pi$ is
 - (a) -1
 - (b) 0
 - (c) 2
 - (d) -2
 - (e) $\frac{1}{2}$

- 3. The function $f(x,y) = xy + \frac{1}{x} + \frac{1}{y}$ has one critical point (a,b) and
 - (a) f has a local minimum at (a, b)
 - (b) f has a local maximum at (a, b)
 - (c) f has a saddle point at (a, b)
 - (d) f(a,b) = 5
 - (e) $f_{xy}(a,b) = 0$

4.
$$\int_{0}^{1} \int_{0}^{1} \frac{y}{1+xy} \, dy \, dx =$$

(a) $2 \ln 2 - 1$
(b) $2 \ln 2 - 3$
(c) $\ln 2$
(d) $1 + \sqrt{2}$
(e) $\ln 2 + 1$

- 5. The surface consisting of all points P(x, y, z) such that the distance from P to the plane y = 1 is equal to the distance from P to the point (0, -1, 0) is a
 - (a) paraboloid
 - (b) cone
 - (c) hyperboloid of one sheet
 - (d) hyperboloid of two sheets
 - (e) sphere

6. $\lim_{(x,y)\to(0,0)} \tan(x) \sin(\frac{|x|}{|x|+|y|})$

- (a) equals 0
- (b) equals $\sin\frac{1}{2}$
- (c) equals 1
- (d) equals 2
- (e) does not exist

- 7. The point on the graph of $z = 3x^2 4y^2$ at which the vector $\overrightarrow{n} = <3, 2, 2, >$ is normal to the tangent plane is
 - (a) $\left(-\frac{1}{4}, \frac{1}{8}, \frac{1}{8}\right)$ (b) $\left(\frac{1}{2}, -\frac{1}{2}, -\frac{1}{4}\right)$ (c) $\left(0, \frac{1}{2}, -1\right)$
 - (d) $\left(\frac{1}{\sqrt{3}}, \frac{1}{2}, 0\right)$
 - (e) $\left(\frac{1}{4}, -\frac{1}{8}, \frac{1}{8}\right)$

8. If $P = \sqrt{u^2 + v^2 + w^2}$, where

 $u = xe^y$, $v = ye^x$ and $w = e^{xy}$,

then the value of $\frac{\partial P}{\partial x}$ at x = 0, y = 2 is

(a) $\frac{6}{\sqrt{5}}$ (b) $\frac{1}{\sqrt{5}}$ (c) $\sqrt{5}$ (d) $3\sqrt{5}$ (e) $\frac{-2}{\sqrt{5}}$

- 9. Let \$\vec{u}\$ be the unit vector in which the directional derivative of \$f(x, y, z) = \frac{x+y}{z}\$ at \$P(1, -1, \frac{1}{2})\$ attains its minimum value. If \$\vec{v}\$ =< 3\sqrt{2}, -2\sqrt{2}, -\sqrt{2} >, then \$\vec{u}\$ · \$\vec{v}\$ =
 (a) \$-1\$
 (b) \$0\$
 (c) \$1\$
 (d) \$5\$
 - (e) −5

10. The length of the line segment of the line

$$L: x = 1 - t, y = t, z = 2 + t, t \in \mathbb{R}$$

that is contained inside the $\operatorname{sphere}(x-1)^2+(y+2)^2+(z-1)^2=5$ is

(a) $2\sqrt{3}$ (b) 2 (c) $\sqrt{3}$ (d) 3 (e) $\sqrt{6}$

- 11. Let \overrightarrow{u} and \overrightarrow{v} be two unit vectors with an angle of $\frac{\pi}{3}$ between them. Then $(\overrightarrow{u} + \text{proj}_{\overrightarrow{v}} \overrightarrow{u}) \cdot \text{proj}_{\overrightarrow{u}} \overrightarrow{v}$ equals
 - (a) $\frac{5}{8}$
 - (b) 1
 - (c) 0
 - (d) $\frac{3}{8}$
 - (e) 2

12. The following equations (in the spherical coordinates)

$$\rho = 4, \ \phi = \frac{\pi}{4}, \ \theta = \frac{\pi}{3}$$

represent respectively

- (a) sphere, half cone, half plane
- (b) sphere, plane, cone
- (c) sphere, cone, half cone
- (d) sphere, half plane, plane
- (e) sphere, line, line

13.
$$\int_{0}^{2} \int_{-\sqrt{2y-y^{2}}}^{\sqrt{2y-y^{2}}} \int_{x^{2}+y^{2}}^{2y} dz \, dx \, dy =$$
(a)
$$\int_{-1}^{1} \int_{1-\sqrt{1-x^{2}}}^{1+\sqrt{1-x^{2}}} \int_{x^{2}+y^{2}}^{2y} dz \, dy \, dx$$
(b)
$$\int_{0}^{2} \int_{x^{2}+y^{2}}^{2y} \int_{-\sqrt{2y-y^{2}}}^{\sqrt{2y-y^{2}}} dx \, dz \, dy$$
(c)
$$\int_{-1}^{1} \int_{0}^{1} \int_{x^{2}+y^{2}}^{2y} dz \, dy \, dx$$
(d)
$$\int_{0}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{x^{2}+y^{2}}^{2y} dz \, dy \, dx$$
(e)
$$\int_{0}^{2} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \int_{x^{2}+y^{2}}^{2y} dz \, dx \, dy$$

14.
$$\int_{-1}^{1} \int_{0}^{\sqrt{1-y^{2}}} \int_{0}^{x} (x^{2} + y^{2}) dz dx dy =$$
(a)
$$\int_{-\pi/2}^{\pi/2} \int_{0}^{1} \int_{0}^{r \cos \theta} r^{3} dz dr d\theta$$
(b)
$$\int_{0}^{\pi} \int_{0}^{1} \int_{0}^{r \cos \theta} r^{2} dz dr d\theta$$
(c)
$$\int_{-\pi/2}^{\pi/2} \int_{0}^{1} \int_{-1}^{r \cos \theta} r^{2} dz dr d\theta$$
(d)
$$\int_{-\pi}^{\pi} \int_{0}^{1} \int_{-1}^{1} r^{3} dz dr d\theta$$
(e)
$$\int_{0}^{r \cos \theta} \int_{0}^{\pi} \int_{0}^{1} r^{3} dr d\theta dz$$

Part II. Solve each of the following 6 questions showing full details.

Q1. (14 Points) Find the absolute maximum and the absolute minimum of

$$f(x,y) = 2x + 4y - x^2 - 2y^2$$

on the rectangular region $R = \{(x, y) : 0 \le x \le 4, 0 \le y \le 3\}.$

Q2. (14 Points) Find the point(s) closest to the origin on the line of intersection of the planes

$$3x - 2y + z = 5$$
 and $2x + y - 2z = -8$.

Q3. (10 Points) Find the volume of the solid between the two planes

$$x + y + z = 2, \ z - 2x - 2y = 10$$

that lies above region in the xy-plane bounded by

$$y = 1 - x^2, \ y = x^2 - 1.$$

Q4. (10 Points) Convert the integral

$$I = \int_{0}^{2} \int_{0}^{\sqrt{2x-x^{2}}} \sqrt{x^{2}+y^{2}} dy dx$$

to polar coordinates, then evaluate it.

Q5. (12 Points) Find the volume of the solid bounded by the cylinder $x^2 + y^2 = 9$ and the planes z = 0 and x + z = 3.

Q6. (10 Points) Find the volume of the solid below the sphere $x^2 + y^2 + z^2 = 2z$ and above the cone $z = \sqrt{x^2 + y^2}$.