Serial No.: Student Name:		Student Number:
Instructor: M. Z. Abu-Sbeih	Math 101- Q3	Date: 22-8-2016
SHOW ALL YOUR WORK. NO CREDITS FOR ANSWERES WITHOUT JUSTIFICATIONS		
	1, , 111	

Problem 1: (7 points) Find the absolute maximum and absolute minimum of the function $y = x\sqrt{1-x}$ on the interval [-3,1].

Problem 2: (7 points) Show that the function $f(x) = x + \ln x$ satisfies the hypotheses of the Mean Value Theorem on the interval [1, *e*]. Find a number *c* that satisfies the conclusion of the MVT.

Problem 3: (14 points) Find the limit if it exists.

a) $\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin x} \right)$

b)
$$\lim_{x \to 0} (x + e^x)^{\frac{1}{x}}$$

Problem 4: (12 points) The first and second derivatives of the function $y = f(x) = \frac{x^2}{x-1}$ are $y' = \frac{x^2 - 2x}{(x-1)^2}$ and $y'' = \frac{2}{(x-1)^3}$ respectively. Find (a) the critical numbers, if any exists,

(b) the increasing and decreasing intervals,

(c) the local extrema,

(d) concavity intervals,

(e) inflection points, if any exists.