KFUPM	Term 153	Date: 28/8/2016
Mathematics & Statistics	MATH 101	Duration: 15 minutes
	Quiz# 6	
Name:	ID #:	Section: 1 Serial #:

1. A rectangle has its base on the x-axis and its upper two vertices on the parabola y = 12 - 12 x^2 what is the largest area the rectangle can have, and what are its dimensions?

2. Evaluate the following limits (if exist) a. $\lim_{x \to \infty} \left(\frac{x+2}{x-1}\right)^x$

b. $\lim_{t \to 0} \frac{\sin 4t - 4t - t^2}{1 - \cos 2t}$

KFUPM	Term 153	Date: 28/8/2016	
Mathematics & Statistics	MATH 101	Duration: 15 minutes	
	Quiz# 6		
Name:	ID #:	Section: 3	Serial #:
1. Evaluate the following limit	s (if exist)		
1			

a. $\lim_{x \to \infty} x^{\overline{x}}$

b.
$$\lim_{\theta \to 0} \frac{\frac{1}{2}^{\theta} - 1}{2\theta}$$

2. Newton's method is used to estimate the *x*-coordinate of the point where the curve of $y = x^3 + 2x$ crosses the horizontal line y = 2. Start with $x_0 = 1$ and calculate x_1 .