King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

> Math 101 Final Exam Term 153 Wednesday, August 31, 2016

EXAM COVER

Number of versions: 4 Number of questions: 28 Number of Answers: 5 per question

This exam was prepared using mcqs For questions send an email to Dr. Ibrahim Al-Lehyani (iallehyani@kau.edu.sa) King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

Math 101 Final Exam Term 153 Wednesday, August 31, 2016 Net Time Allowed: 180 minutes

MASTER VERSION

MASTER

- 1. The value of the limit $\lim_{x \to 2^+} \frac{1-x}{2-x}$ is equal to:
 - (a) $+\infty$
 - (b) $-\infty$
 - (c) +1
 - (d) -1
 - (e) 0

2. If $|x - 2| \le g(x) \le 3 \sec^2(\pi x) - 2$, then $\lim_{x \to 1} g(x)$ is equal to:

- (a) 1
- (b) 0
- (c) -1
- (d) Does not exist
- (e) ∞

- 3. The largest positive number δ such that |2x-4| < 0.1 whenever $0 < |x-2| < \delta$ is equal to
 - (a) 0.05
 - (b) 0.1
 - (c) 0.5
 - (d) 0.01
 - (e) 0.005

4. If
$$f(x) = \begin{cases} a - \frac{\sin x}{x} & -1 \le x < 0 \\ x^2 - \sqrt{x} + b & 0 \le x < 4 \\ 5(\frac{x^2 - 1}{x + 1}) & 4 \le x \le 5 \end{cases}$$

satisfies the hypotheses of the Intermediate Value Theorem, then $b^a =$

- (a) 1
- (b) 0
- (c) 3
- (d) 5
- (e) 4

MASTER

- 5. If f is differentiable, then $\lim_{h \to 0} \frac{f(2x-h) f(2x-3h)}{h} =$
 - (a) 2f'(2x)
 - (b) -2f'(x)
 - (c) -2f'(2x)
 - (d) f'(x)

(e)
$$-f'(x)$$

6. If the average rate of change of $y = \frac{1}{\sqrt{4-5x}}$ with respect to x on the interval [-1,0] is equal to c, then c =

(a)
$$\frac{1}{6}$$

(b) $-\frac{29}{36}$
(c) $-\frac{1}{3}$
(d) $\frac{31}{36}$
(e) $-\frac{2}{3}$

MASTER

7. The function
$$f(x) = \frac{\sqrt[3]{x}}{1-x^2}$$
 has a vertical tangent at $x =$

- (a) 0
- (b) 1
- (c) -1
- (d) ∓1
- (e) 4

- 8. If the position function of a particle is given by $s(t) = 2t^3 - 9t^2 + 12t + 1$, then the distance travelled by the particle during the interval time [1, 3] is:
 - (a) 6
 - (b) 4
 - (c) 5
 - (d) 10
 - (e) 1

9. If
$$y = \sqrt{x(x-3)}$$
, then y is

- (a) decreasing on (0, 1) and increasing on $(1, +\infty)$.
- (b) increasing on (0, 1) and decreasing on $(1, +\infty)$.
- (c) increasing on (0, 1) and increasing on $(1, +\infty)$.
- (d) decreasing on (0, 1) and decreasing on $(1, +\infty)$.
- (e) increasing on $(0, +\infty)$.

10. The graph of $y = \sec x + \csc x, 0 < x < \frac{\pi}{2}$, has a horizontal tangent at x =

(a)
$$\frac{\pi}{4}$$
 only
(b) $\frac{\pi}{3}$ and $\frac{\pi}{4}$
(c) $\frac{\pi}{3}$ only
(d) $\frac{\pi}{6}$ and $\frac{\pi}{4}$
(e) $\frac{\pi}{6}$ only

- 11. The slope of the tangent line to the graph of $y = \ln(1 + x + x^2)^3$ at x = 1 is equal to
 - (a) 3
 - (b) $\frac{1}{3}$
 - (c) 1
 - (d) ln 3
 - (e) 0

12. If $f(x) = e^{x + \sin x}$, then $f'(\pi) =$

- (a) 0
- (b) $e^{-\pi}$
- (c) e^{π}
- (d) 1
- (e) −1

- 13. The slope of the tangent line to the curve $y^y = x^x$ at the point (e, e) is
 - (a) 1
 - (b) 0
 - (c) -1
 - (d) e
 - (e) e^{-1}

14. If
$$f(x) = \sqrt{1 + 2^{x+x^2}}$$
 then $f'(0) =$

(a)
$$\frac{\ln 2}{2\sqrt{2}}$$

(b)
$$\frac{\ln 2}{2}$$

(c)
$$\frac{\ln 2}{\sqrt{2}}$$

(d)
$$\frac{1}{2\sqrt{2} \ln 2}$$

(e)
$$\frac{1}{2 \ln 2}$$

15. If
$$f(x) = x^{100} + 3\sin x$$
 then $f^{(358)}\left(\frac{\pi}{6}\right) =$

(a)
$$\frac{-3}{2}$$

(b)
$$\frac{1}{2}$$

(c)
$$\frac{3\sqrt{2}}{2}$$

(d) 0
(e)
$$\frac{3\sqrt{3}}{2}$$

16. If the sides of a rectangle are increasing at the same rate of $\frac{1}{4}m/s$, then how fast is the area of the rectangle increasing when the sides are 4 and 8.

- (a) 3
- (b) 2
- (c) 1
- (d) 4
- (e) 8

17. The radius of a cone was measured and found to be 3cmwith a possible <u>relative</u> error of $\frac{0.03}{3}$. If the height of the cone is measured to be triple of the radius, then the <u>relative</u> error of the volume of the cone is:

$$\left[\text{Hint: } V = \frac{1}{3}\pi r^2 h\right]$$

- (a) 0.03
- (b) 0.01
- (c) $(0.03) \pi$
- (d) (0.01) π
- (e) 3π

18. The curve $y = \cosh(\ln x) + 4x$ has a horizontal tangent line at x =

(a)
$$\frac{1}{3}$$

(b) $-\frac{1}{3}$
(c) $\frac{1}{6}$
(d) 3
(e) -3

- 19. If $f(x) = \tan^{-1}(\sinh x)$ then f'(x) is
 - (a) $\operatorname{sech} x$
 - (b) $\operatorname{csch} x$
 - (c) $\tanh x$
 - (d) $\operatorname{coth} x$
 - (e) $\cosh x$
- 20. If a and b represent the absolute maximum and the absolute minimum of the function $f(x) = \frac{x^3}{3} + \frac{x^2}{2} 2x + 1$ on the interval [0, 2], then a + b =
 - (a) $\frac{3}{2}$ (b) $\frac{5}{3}$ (c) $\frac{2}{3}$ (d) $\frac{8}{3}$ (e) $\frac{5}{2}$

- 21. If $f(x) = 4 + \sqrt{x-1}$, then the value of c guaranteed by the mean value theorem on [1, 5] is
 - (a) 2
 - (b) 1
 - (c) 0
 - (d) 6
 - (e) 4

22. In the interval [-2, 2], the equation $x^3 - 15x + 20 = 0$ has

- (a) exactly one root
- (b) at least one root
- (c) at most two roots
- (d) at least two roots
- (e) no root

- 23. Let $y = f(x) = ax^3 + bx^2 9x + c$, where a, b and c are constants. If f has local maximum at x = -1, an inflection point at x = 1, and y- intercept equals to 1, then
 - (a) a = 1, b = -3, and c = 1
 - (b) a = 1, b = 0, and c = 1
 - (c) a = 1, b = -3, and c = 0
 - (d) a = -1, b = 0, and c = 1
 - (e) a = -1, b = 3, and c = 1

24.
$$\lim_{x \to 0} \left[\frac{1}{x(x+1)} - \frac{\ln(1+x)}{x^2} \right] =$$

(a)
$$-\frac{1}{2}$$

(b) 0
(c) 1
(d) ∞

(e)
$$\frac{1}{2}$$

MASTER

25. The graph of the function $f(x) = 2 \ln(1+x^2) + 3 \tan^{-1} x$ is

(a) concave up on
$$\left(-2, \frac{1}{2}\right)$$
 concave down on $\left(-\infty, -2\right)$ & $\left(\frac{1}{2}, \infty\right)$

(b) concave down on
$$\left(-2, \frac{1}{2}\right)$$
 concave up on $\left(-\infty, -2\right)$ & $\left(\frac{1}{2}, \infty\right)$

(c) concave up on $(-\infty, -2)$ concave down on $\left(\frac{1}{2}, \infty\right)$

(d) concave down on
$$(-\infty, -2)$$
 concave up on $\left(\frac{1}{2}, \infty\right)$

(e) always concave down

26. The height of a right circular cone is 4cm and its radius is 2cm. The dimensions of the right circular cylinder with the maximum volume that can be inscribed in the cone is:

(a) radius
$$=\frac{4}{3}$$
 height $=\frac{4}{3}$

(b) radius
$$=\frac{2}{3}$$
 height $=\frac{2}{3}$

(c) radius
$$=\frac{2}{3}$$
 height $=\frac{4}{3}$

(d) radius
$$=\frac{4}{9}$$
 height $=\frac{4}{9}$

(e) radius
$$=\frac{4}{3}$$
 height $=\frac{4}{9}$

- 27. If we use Newton's method to find an approximate solution for $x 2 \cos x = 0$ starting with $x_1 = \frac{\pi}{2}$, then the next approximate solution is $x_2 =$
 - (a) $\frac{\pi}{3}$
 - (b) 0
 - (c) π
 - (d) $\frac{\pi}{4}$
 - (e) $\frac{\pi}{6}$

28. If $f'(x) = \frac{(1+3\sqrt{x})^2}{x}$ then the most general antiderivative is

- (a) $\ln|x| + 12\sqrt{x} + 9x + C$
- (b) $\ln |x| + 12\sqrt{x} + 9x^2 + C$
- (c) $\ln |x| + 6\sqrt{x} + 9x + C$
- (d) $\ln |x| + 3\sqrt{x} + 9x + C$
- (e) $\ln|x| + 6\sqrt{x} + 9x^2 + C$

Q	MM	V1	V2	V3	V4
1	a	d	e	b	е
2	a	с	с	b	с
3	a	d	с	b	с
4	a	с	e	a	b
5	a	с	b	е	е
6	a	d	e	с	d
7	a	с	e	d	е
8	a	d	с	b	с
9	a	a	b	a	е
10	a	e	d	с	d
11	a	b	d	d	е
12	a	a	e	b	b
13	a	с	с	е	b
14	a	a	с	е	d
15	a	a	с	a	b
16	a	e	a	b	a
17	a	d	с	b	b
18	a	a	e	d	d
19	a	с	b	е	d
20	a	e	a	a	b
21	a	d	c	d	е
22	a	e	d	е	a
23	a	е	е	е	b
24	a	a	с	a	d
25	a	с	a	е	a
26	a	a	b	е	е
27	a	e	с	е	с
28	a	a	b	с	d