MASTER

1. If
$$f(x) = \frac{xe^x}{x+1}$$
, then $f'(0)$ is:

a) 1
b) 0
c) -1
d) 2
e) -2

2.
$$\lim_{x \to \frac{\pi}{4}} \frac{\cot x - 1}{x - \frac{\pi}{4}}$$
 is:
a) -2

b) 2

c) 0

- d) Undefined
- e) $+\infty$

MASTER

3. If $f(x) = x \sec x$, then f''(x) is equal to:

- a) $2 \sec x \tan x + 2x \sec^3 x x \sec x$
- b) $2 \sec x \tan x + 2x \sec^3 x + x \sec x$
- c) $2 \sec x \tan x 2x \sec^3 x + x \sec x$
- d) $2 \sec x \tan x 3x \sec^3 x x \sec x$
- e) $2 \sec x \tan x + 3x \sec^3 x x \sec x$

4. Let
$$f(x) = x^3 \sin \frac{1}{x}$$
 if $x \neq 0$ and $f(0) = 0 = f'(0)$. Then f' is:

- a) Continuous at $x_0 = 0$
- b) Continuous at $x_0 = 0$ but f is not.
- c) Has a removable discontinuity at $x_0 = 0$
- d) Has a jump discontinuity at $x_0 = 0$
- e) Has an infinite discontinuity at $x_0 = 0$

MASTER

5. If
$$f(x) = x^3 \ln\left(\frac{1}{x}\right)$$
, then $f'(2)$ is :

- a) -12 ln 2 4
 b) 12 ln 2 4
 c) 12 ln(1/2) + 4
 d) -12 ln(1/2) + 4
- (1) (1/2) + (1/2)
- e) $-12 \ln 2 + 4$
- 6. A particle moving with a position function $s(t) = t^3 t^2 + t + 1$. At which time its velocity v(t) is equal to 9?
 - a) t = 2b) t = 1c) $t = \frac{4}{3}$ d) $t = \frac{3}{4}$ e) $t = \frac{1}{4}$

MASTER

7. A particle is moving along the curve $y = x^2$. If x is increasing at the rate of $\sqrt{2}$, how fast is the distance D from the point (2,0) to the particle is changing when the particle passes through (1,1)?

a) 1
b)
$$\frac{1}{\sqrt{2}}$$

c) $\sqrt{2}$
d) $\frac{-1}{\sqrt{2}}$
e) -1

8. If $\lim_{x \to 2} \left(\frac{x^2 + x - 6}{\sin(x - 2)} + \frac{\tan(\pi x/8)}{x} \right) = \frac{a}{b}$ where a and b are positive integers and $\frac{a}{b}$ is in its lowest term, then a + b =

- a) 13
- b) 9
- c) 22
- d) 18
- e) 27

MASTER

9. The slope the tangent line to the graph of $y = x^2 \tan\left(\frac{1}{x}\right)$ at the point $x = \frac{1}{\pi}$, equals

- a) -1 b) 1 c) 0 d) $\frac{2}{\pi}$ e) 2π
- 10. The slope the **<u>normal</u>** line to the circle $(x 2)^2 + y^2 = 25$ at the point (-1, 4) is equal to

a)
$$-\frac{4}{3}$$

b) $-\frac{3}{4}$
c) $\frac{3}{4}$
d) 3
e) $\frac{4}{3}$

MASTER

11. If
$$f(x) = \frac{(x-4)(x^2+1)^3}{(x-1)\cos x}$$
 then $f'(0) =$

a) 3 b) -5 c) 0

d) 4

e) -4

12. If
$$y = (x^{-2} + x^{-1})^{-1}$$
 then $y'(1) =$

a)
$$\frac{3}{4}$$

b) $-\frac{4}{3}$
c) $\frac{4}{3}$
d) $-\frac{3}{4}$
e) 12

Math 101, Exam II, Term 153	Page 7 of 10	MASTER
-----------------------------	---------------------	--------

13. The slope of the <u>normal</u> line to the curve $\sqrt{xy} + \frac{x}{y^2} = 6$ at the point (4, 1) is equal to:

a)
$$\frac{-28}{5}$$

b) 3
c) -3
d) $\frac{11}{5}$
e) $-\frac{5}{2}$

14. Let $y = (x + 2 \cos x)^{x+1}$. Then y'(0) =

a) 1+2 ln 2
b) 2 ln 2
c) 0
d) 1
e) -1 + ln 2

MASTER

- 15. A stone is thrown vertically upward so that its equation of motion is $s = 64t 16t^2$ where s is in ft and t is in seconds. The highest altitude reached by the stone and its velocity when it hits the ground are respectively
 - a) $s = 64 \, ft$ and $v = -64 \, ft/s$
 - b) s = 32 ft and v = 64 ft/s
 - c) $s = 64 \, ft$ and $v = 64 \, ft/s$
 - d) s = 32 ft and v = -64 ft/s
 - e) $s = 64 \, ft$ and $v = -32 \, ft/s$
- 16. A ladder 5m long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of 1 m/s, how fast is the angle, between the ladder and the ground, changing when the bottom of the ladder is 3m from the wall?

a)
$$-\frac{1}{4}$$
 rad/s
b) $\frac{3}{20}$ rad/s
c) $-\frac{5}{4}$ rad/s
d) -3 deg/s
e) 22 deg/s

MASTER

17. Let $f(x) = \begin{cases} x^2, & x \leq -1 \\ mx+b, & x > -1 \end{cases}$ If the constants *m* and *b* make the function *f* differentiable everywhere, then m-bis equal to

- a) -1
- b) 5
- c) 1
- d) -5
- e) 0

18. A particle is moving with a position function $s(t) = \frac{t^3}{3} - \frac{5}{2}t^2 + 6t - 1$. The distance traveled by the particle on the interval [0, 4] is equal to

a) $\frac{17}{3}$ b) $\frac{34}{3}$ c) $\frac{34}{9}$ d) $\frac{19}{3}$ e) $\frac{19}{32}$

19.
$$\lim_{t \to 0} \frac{3 \tan 2t - 5 \tan 3t}{7t \cos t + 4 \sin 5t} = -$$

a)
$$-\frac{1}{3}$$

b) $\frac{1}{27}$
c) $-\frac{1}{9}$
d) $\frac{5}{27}$
e) $-\frac{8}{9}$

20.
$$\frac{d}{dx} \left(\frac{2x-1}{3x+2}\right)^8 =$$

a)
$$\frac{56(2x-1)^7}{(3x+2)^9}$$

b)
$$\frac{48(2x-1)^7}{(3x+2)^8}$$

c)
$$\frac{56(2x-1)^7}{(3x+2)^8}$$

d) $\frac{72(2x-1)^7}{(3x+2)^9}$

e)
$$\frac{24(2x-1)^7}{(3x+2)^9}$$