Department of Mathematics and Statistics Semester 152

STAT510

First Exam

Sunday April 3, 2016

Name:_____

ID #: _____

Question	Marks	Marks Obtained
1	6	
2	8	
3	2	
4	4	
5	14	
6	6	
7	4	
8	6	
Total	50	

- 1. In simple linear regression, how many levels of the predictor variables should be investigated, and why?
 - a. If the purpose is to estimate the slope.
 - b. If the purpose is to estimate the mean response at X_h ?
 - c. If the purpose is to predict a new observation at X_h ?

2. Consider the simple linear regression model $y = \beta_0 + \beta_1 x + \varepsilon$ where β_0 is known. a. Find the least squares estimator of β_1 .

- b. What is the variance of this estimator?
- c. Compare this variance to the variance of the estimator in the case where both slope and intercept are unknown.

d. Write down a $100(1 - \alpha)\%$ confidence interval for β_1 .

3. Show that the residuals from a linear regression model can be written as $e = (I - H)\epsilon$.

- 4. Consider the model $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i$; $i = 1, 2, \dots, n$ If you wish the test the hypothesis : H_0 : $\beta_1 = \beta_3, \beta_2 = 0$.
 - a. Write down the hypothesis in matrix notation.

b. What is the test statistic for this hypothesis in the general linear test approach?

5. An engineer wants to relate gasoline mileage y to engine displacement X_1 and number of carburetor barrels X_2 . He fits two models and gets the following results

Model I

$$\hat{y} = 33.7 - 0.47 X_1$$

Incomplete ANOVA Table

Source Variation	of	SS	df	
Regression		955.34		
Error		282.2		
Total			31	

A 95% confidence interval for the mean gasoline mileage when $X_1 = 275 in^3$ is (19.5,21.7)

A 95% prediction interval for the gasoline mileage when $X_1 = 275 in^3$ is (14.3,27.0)

Model II

$$\hat{y} = 32.9 - 0.053 X_1 + 0.959 X_2$$

Incomplete ANOVA Table

Source Variation	of	SS	df
Regression		972.9	
Error			
Total			

Coefficient	Test Statistic
β_1	-8.66
β_2	1.43

A 95% confidence interval for the mean gasoline mileage when $X_1 = 275 in^3$ and $X_2 = 2$ is (18.8,21.5)

A 95% prediction interval for the gasoline mileage when $X_1 = 275 in^3$ and $X_2 = 2$ is (13.8,26.4)

- a. Complete the ANOVA Tables.
- b. Compute R^2 and R^2_{Adj} for Models I and II, and comment on the results.

- c. Construct a 95% confidence interval for β_1 in model II
- d. What do the confidence and prediction intervals say about the predictor variable number of carburetor barrels?
- e. Find the extra sum of squares $SSR(X_2|X_1)$.
- f. Test the effect of the number of carburetor barrels.

6. For each of the following regression models, indicate whether it is a general linear regression model. If it is not, state whether it can be expressed in the linear model form by a suitable transformation.

a.
$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 ln X_{i2} + \beta_3 X_{i1}^2 + \varepsilon_i$$

b.
$$Y_i = \varepsilon_i \exp(\beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2}^2)$$

c.
$$Y_i = ln(\beta_1 X_{i1}) + \beta_2 X_{i2} + \varepsilon_i$$

- 7. For a multiple regression model with four *X* variables,
 - a. what is the relevant extra sum of squares for testing

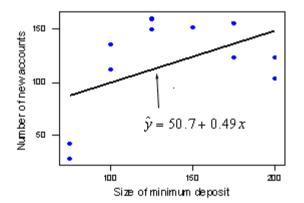
i.
$$H_0: \beta_4 = 0.$$

ii.
$$H_0: \beta_1 = \beta_3 = 0.$$

b. Show that

$$SSR(X_1, X_2, X_3, X_4) = SSR(X_1) + SSR(X_2, X_3|X_1) + SSR(X_4|X_1, X_2, X_3)$$

8. Consider the following scatter plot, and the associated ANOVA table.



ANOVA Table

Source	of	SS	DF
Variation			
Regression		5141	
Error		14742	
Lack of Fit			
Pure Error		1148	
Total			

Complete the ANOVA Table and test for lack of fit at the 5% significance level (write down the null and alternative hypotheses, the test statistic, decision and conclusion).