King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics STAT-361 Operations Research I ¹ Major 2 April 19th, 2016.

Problem 1 (35 pts)

Solve the following transportation problem.

Demand Nodes \rightarrow	1	2	3	4	
Supply Nodes \downarrow			Costs		Offer
1	6	4	5	4	800
2	5	3	5	5	1000
3	4	4	3	5	800
4	3	6	2	3	1000
Demand	1000	800	1000	800	3200

Table 1: Data for problem 1

¹Dr. Slim Belhaiza (c)

Problem 2 (30 pts)

Solve the following assignment problem.

Tasks \rightarrow	1	2	3	4
Workers \downarrow		Costs		
1	2	5	5	5
2	5	6	4	4
3	4	4	5	4
4	7	4	4	5

Problem 3 (35 pts)

Tasks	Condition	Duration (days)
a	—	4
b	_	4
с	after a	3
d	after b	4
е	after d	5
f	after c	3
g	after b and c	4
h	after d	3
i	after f and g	4
k	after h and i	5

Consider the following project scheduling problem detailed in table 2.

Table 2: Data for problem 3

a) Use the CPM method to draw the graph representing the interdependence between the tasks of the project. (10 pts)

b) Find the shortest possible duration of the project. (10 pts)

c) Find the critical tasks and the critical tasks. (5 pts)