KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF MATHEMATICS & STATISTICS DHAHRAN, SAUDI ARABIA

STAT 301: Introduction to Probability Theory

Semester 152 Third Major Exam Thursday April 28, 2016 3:45 – 5:45 pm

Name:

ID #:

Question No	Full Marks	Marks Obtained
1	12	
2	11	
3	10	
4	10	
5	10	
Total	53	

Q.No.1:- (2+5+5 = 12 points) Suppose that the two continuous random variables X and Y follow the following joint probability density function:

f(x, y) = k(3x - y); 0 < x < 1, 0 < y < 1

(a) Find the value of *k*.

 $\frac{\text{STAT 301}}{\text{(b) Find } P(X < 0.4 \mid Y = 0.5)}$

STAT 301Introduction to Probability Theory(c) Find ρ_{XY} (the correlation coefficient between X and Y).

STAT 301

Q.No.2:-(4+7 = 11 points)

(a) Suppose that a continuous random variable *X* follows the following distribution:

$$f(x) = \frac{1}{\sqrt{32\pi}} e^{-\frac{1}{32}(X^2 + 100 - 20X)}; \qquad -\infty < x < \infty$$

Find the moment generating function of X.

STAT 301Introduction to Probability Theory6(b) Let X_1, X_2, \dots, X_n be a random sample from a distribution with mean μ_X and variance σ_X^2 . Define $S^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n+1}$ where $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$ is the sample mean. Find $E(S^2)$.

STAT 301Introduction to Probability Theory7Q.No.3:- (5+5 = 10 points)Suppose that X_1 and X_2 are independent random variables having a common mean μ . Suppose also that $Var(X_1) = \sigma_1^2$ and $Var(X_2) = \sigma_2^2$. Define a new variable $Z = \alpha X_1 + \alpha X_1$ $(1 - \alpha)X_2$ where α is a constant.

(a) Derive the variance of this new variable Z i.e. Var(Z).

(b) Find the value of α for which the Var(*Z*) is minimum.

Q.No.4:-(5+5=10 points)

(a) Let X_1 and X_2 follow the following joint distribution:

$$f(x_1, x_2) = \frac{1}{2\pi\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)} [x_1^2 + x_2^2 - 2\rho x_1 x_2]}; \qquad -\infty < x_1 < \infty, \quad -\infty < x_2 < \infty$$

Find the marginal distribution of X_2 and show that it is a valid probability density function.

STAT 301Introduction to Probability Theory9(b) Let Y_1, Y_2 and Y_3 be three independent standard normal random variables. If $Z_1 = Y_1 + Y_2, Z_2 = Y_1 + Y_2$ Y_3 and $Z_3 = Y_2 + Y_3$, compute (and simplify) the joint distribution of Z_1 , Z_2 and Z_3 .

10

Q.No.5:- (10 points) Suppose that 3 balls are chosen without replacement from an urn containing 5 white and 2 black balls. Let X denotes the number of white balls chosen and Y represents the number of black balls chosen.

Fill the following table of Joint Probability Mass Function.

Joint Probability Mass Function		Y			Marginal	
		0	1	2	3	of X
X	0					
	1					
	2					
	3					
Margin	al of Y					