KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF MATHEMATICS AND STATISTICS Term 152

STAT 212 BUSINESS STATISTICS II Third Major Exam <u>Allowed time 75 minutes</u> Wednesday April 20, 2016

Name:______ ID #:_____ Section #:_____ Srl #:____

Important Note:

- 1) You must **show all work** to obtain full credit for questions on this exam.
- 2) **DO NOT round** your answers at each step. Round answers only if necessary at your final step to <u>4 decimal places</u>.

Question No	Full Marks	Marks Obtained
Q1	17	
Q2	11	
Q3	22	
Total	50	

Question One (17 *points*):

The marketing department of a tool manufacturing company forecasts the quarterly demand for the company's products (Sales in \$Millions). The predictors used are Car Sales (X_1 in Millions), Money Supply Index of the previous quarter (X_2), and Oil Price of previous quarter (X_3 in \$/barrel). The results of the regression analysis are shown in the Minitab output below:

Regression Analysis: Y versus X1, X2, X3

The regression equation is Y = $85.5 + 0.523 \times 1 - 33.3 \times 2 + 0.249 \times 3$

Predictor	Coef	SE Coef	Т	P	VIF
Constant	85.51	13.69	6.25	0.000	
X1	0.5226	0.1131	4.62	0.001	1.891
Х2	-33.274	6.360	-5.23	0.000	2.134
ХЗ	0.2489	0.1277	1.95	0.080	1.393

S = 0.697823 R-Sq = 86.1% R-Sq(adj) = 81.9%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	3	30.094	10.031	20.60	0.000
Residual Error	10	4.870	0.487		
Total	13	34.964			

Source	DF	Seq SS
X1	1	2.043
Х2	1	26.200
ХЗ	1	1.851

Regression Analysis: Y versus X1, X2, ...

The regression equation is Y = - 20517 + 565 X1 + 8665 X2 + 1162 X3 - 241 X1*X2 - 32.0 X1*X3 - 488 X2*X3 + 13.4 X1*X2*X3 + 0.128 X1^2 + 7 X2^2 + 0.0283 X3^2

Predictor	Coef	SE Coef	Т	P
Constant	-20517	13077	-1.57	0.215
X1	565.2	318.4	1.78	0.174
Х2	8665	5949	1.46	0.241

ХЗ	1161.9	694.3	1.67	0.193	
X1*X2	-240.7	138.1	-1.74	0.180	
X1*X3	-31.97	18.06	-1.77	0.175	
X2*X3	-487.8	294.2	-1.66	0.196	
X1*X2*X3	13.412	7.661	1.75	0.178	
X1^2	0.1275	0.1418	0.90	0.435	
X2^2	6.9	247.0	0.03	0.979	
X3^2	0.02827	0.09627	0.29	0.788	
S = 0.57118	8 R-Sq	= 97.2%	R-Sq(adj) = 8	7.9%
Analysis of	Variance	e			
Source	DF	SS	MS	F	P
Regression	10	33.9852	3.3985	10.42	0.040
Residual Er	ror 3	0.9788	0.3263		
Total	13	34.9639			

a. Referring to the graphs below, what can you conclude about the regression model? Explain. (4 points)

b. Given that fitting the model x = 164 + 0.520 x1 - 102 squareroot(x2) + 0.247 x3 gave the previous graphs in part a , then what do you suggest based on your conclusion in part a above? Explain in detail. (2 points)

c. From the linear model, which predictor is significant to estimate the quarterly demand of the company's product? Why? (3 *points*)

d. From the nonlinear model, is the overall model significant in predicting the quarterly demand of the company's product? Why? (3 *points*)

e. Do you see any conflict between the two models? If yes, what (is/are) (that/these) conflict(s)?
(5 points)

Question Two (11 points):

The Minitab output below shows the result of regressing the asking Price, for condos in some city, on six variables namely; number of Rooms, number of Bedrooms, number of Baths, Age of the condo, assessed Value (\$), and Area (ft²).

Correlations: Price, Rooms, Bedrooms, Baths, Age, Value, Area

Rooms	Price 0.694 0.000	Rooms E	Bedrooms	Baths	Age	Value
Bedrooms	0.639 0.001	0.835 0.000				
Baths	0.325 0.113	0.301 0.144	0.137 0.513			
Age	0.429 0.032	0.440 0.028	0.475 0.016	0.114 0.588		
Value	0.555 0.004	0.354 0.082	0.228 0.274	0.331 0.106	0.018 0.931	
Area	0.672	0.727	0.621 0.001	0.365 0.073	0.327 0.111	0.546

Cell Contents: Pearson correlation P-Value

Best Subsets Regression: Price versus Rooms, Bedrooms, ...

Response is Price

											А
						В					g
						е					е
						d					*
					R	r	В		V		V
					0	0	а		а	А	а
					0	0	t	А	l	r	1
			Mallows		m	m	h	g	u	е	u
Vars	R-Sq	R-Sq(adj)	Ср	S	S	S	s	е	е	а	е
1	48.2	46.0	10.8	8927.0	Х						
1	45.2	42.8	12.7	9182.4						Х	
2	62.0	58.5	4.4	7823.6				Х			Х
2	59.1	55.4	6.1	8112.1	Х				Х		
3	69.3	64.9	1.9	7197.8	Х			Х			Х
3	67.3	62.6	3.1	7423.5		Х		Х			Х
4	70.8	65.0	2.9	7184.9				Х	Х	Х	Х
4	70.8	64.9	2.9	7191.4	Х			Х	Х		Х
5	72.1	64.8	4.1	7204.1	Х			Х	Х	Х	Х
5	71.1	63.5	4.8	7341.4		Х		Х	Х	Х	Х
6	72.2	62.9	6.1	7392.5	Х	Х		Х	Х	Х	Х
6	72.2	62.9	6.1	7394.1	Х		Х	Х	Х	Х	Х
7	72.3	60.9	8.0	7591.1	Х	Х	Х	Х	Х	Х	Х

Based on the output before, answer the following:

a. If you want to use forward selection regression, which variable you must start with? Why? (2 points)

b. If you want to use backward elimination regression, which variable you must start with? Why? (2 points)

c. If you want to use best subset regression, write down the model you are going to select? Why? (4 points)

d. Do you think there is severe collinearity in this study? Why? (3 *points*)

Question Three (22 points):

The following Minitab output resulted from a study conducted on a sample of 96 companies to predict the Return on capital (%) using four other variables which are Sales (\$ millions), operating Margin (%), Debt to Capital (%), and company's Sector (Banking, Computers, Construction, Energy).

Regression Analysis: RETURN versus SALES, MARGIN, ...

The regression equation is RETURN = 14.6 + 0.000023 SALES + 0.0824 MARGIN - 0.0918 DEBTTOCAPITAL + 10.1 Computer + 2.81 Construction - 1.64 Energy

Coef	SE Coef	Т	P	VIF
14.619	2.515	5.81	0.000	
0.00002284	0.00002572	0.89	0.377	1.247
0.08240	0.05528	1.49	0.140	1.221
-0.09184	0.04439	-2.07	0.041	1.622
10.052	2.025	4.96	0.000	1.856
2.807	2.276	1.23	0.221	1.822
-1.641	1.873	-0.88	0.383	1.910
	Coef 14.619 0.00002284 0.08240 -0.09184 10.052 2.807 -1.641	CoefSE Coef14.6192.5150.000022840.000025720.082400.05528-0.091840.0443910.0522.0252.8072.276-1.6411.873	CoefSE CoefT14.6192.5155.810.000022840.000025720.890.082400.055281.49-0.091840.04439-2.0710.0522.0254.962.8072.2761.23-1.6411.873-0.88	CoefSE CoefTP14.6192.5155.810.0000.000022840.000025720.890.3770.082400.055281.490.140-0.091840.04439-2.070.04110.0522.0254.960.0002.8072.2761.230.221-1.6411.873-0.880.383

S = 6.30579 R-Sq = 46.8%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	6	3109.65		13.03	0.000
Residual Error	89	3538.90			
Total	95	6648.55			

Regression Analysis: RETURN versus SALES, Computer, Construction, Energy

Predictor	Coef	SE Coef	Т	P	VIF
Constant	14.448	1.385	10.43	0.000	
SALES	0.00002960	0.00002498	1.19	0.239	1.116
Computer	10.975	1.914	5.73	0.000	1.574
Construction	0.327	2.091	0.16	0.876	1.460
Energy	-3.000	1.847	-1.62	0.108	1.763

R-Sq = 42.6% R-Sq(adj) = 40.1%

Analysis of Variance

Source Regression Residual Erron Total	DH 2 2 91 95	SS 4 2835.53 4 3813.01 5 6648.55	MS 708.88 41.90	F 16.92	P 0.000
Source	DF	Seq SS			
SALES	1	0.59			
Computer	1	2675.19			
Construction	1	49.16			
Energy	1	110.58			

Referring to the two models above, answer the following:

a. Explain in detail which of the two models is better in predicting the Return on capital of the company. (6 points)

b. Using the first model, interpret the coefficient of the Computer predictor.(4 *points*)

c. Compute the coefficient of partial determination for BOTH the operating Margin and the Debt to Capital. (4 *points*)

Page |9

e. Do you think that BOTH the operating Margin and the Debt to Capital are significant to the Return on Capital in the presence of the other predictors? Explain in detail. (6 points)

With My Best Wishes