King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics

Math 551 Abstract Algebra - Term 152

Mid-term Exam (Duration = 6 hours)

This is a closed book closed notes exam

(1) [10 points] Let $\{R_i\}_{i \in \Delta}$ be a family of rings and consider the ring $R:=\prod_{i \in \Delta} R_i$. Prove that if Δ is finite, then every ideal of R has the form $\prod_{i \in \Delta} I_i$ for some ideals I_i of R_i ($i \in \Delta$). Is this fact true if Δ is infinite? (Justify)

(2) [10 points] Let R be a ring. Prove: $0 \rightarrow Y' \rightarrow Y \rightarrow Y'' \text{ exact} \Leftrightarrow 0 \rightarrow \text{Hom}_{R}(X, Y') \rightarrow \text{Hom}_{R}(X, Y) \rightarrow \text{Hom}_{R}(X, Y'') \text{ exact}, \forall X$

(3) [10 points] Let R be a commutative ring and let M be an R-module. Prove the implications: M free \Rightarrow M projective \Rightarrow M flat

and provide explicit counterexamples for the converses.

(4) [10 points] Prove that if a short exact sequence of modules $0 \rightarrow M' \rightarrow M' \rightarrow 0$ splits, then:

(a) [4 points] M = Ker(g) \oplus Im(ϕ), where $g_{\circ}\phi = 1_{M''}$

- (b) [4 points] M = Ker(ψ) \oplus Im(f), where $\psi_0 f = 1_{M'}$
- (c) [2 points] $M \cong M' \oplus M''$

(5) [15 points] Let R be an integral domain containing a field k. Prove that if R is a finite dimensional vector space over k, then R is a field.

(6) [20 points] Let R be a commutative ring. An R-module M is called <u>faithfully flat</u> if M is flat and $M \otimes N = 0 \Rightarrow N = 0$. Prove that the following conditions are equivalent:

- (i) M is faithfully flat;
- (j) M is flat and if u: $E \rightarrow F$ is an R-map with $u \neq 0$, then $T_M(u)$: $M \otimes E \rightarrow M \otimes F$ is also $\neq 0$;
- (k) M is flat and $pM \neq M$ for all <u>maximal</u> ideals p of R;
- (I) $N' \to N \to N''$ is exact $\Leftrightarrow M \otimes N' \to M \otimes N \to M \otimes N''$ is exact.

[Each implication = **5 points**]

(7) [25 points] Let R be a commutative ring and E, F two R-modules. We say that E is F-flat if: $0 \rightarrow F' \rightarrow F \text{ exact} \Rightarrow 0 \rightarrow E \otimes F' \rightarrow E \otimes F \text{ exact}$

- (a) [5 points] Prove: E is F-flat \Rightarrow E is G-flat for every submodule G of F. [Use Snake Lemma]
- (b) [5 points] Prove: E is F-flat \Rightarrow E is (F/G)-flat for every submodule G of F. [Use Snake Lemma]

(c) [5 points] Assume F = $F_1 \oplus F_2$. Prove: E is F_i -flat (i=1, 2) \Leftrightarrow E is F-flat. [Use Snake Lemma]

(d) [5 points] Assume $F = \bigoplus_{i \in \Delta} F_i$. Prove: E is F_i -flat ($\forall i \in \Delta$) \Leftrightarrow E is F-flat. [Use (c)]

(e) [5 points] Prove: E is flat ⇔ E is R-flat. [Use (d) and (b)]