King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics Math 550: Linear Algebra Second Exam, Spring Semester 152 (120 minutes) Jawad Abuhlail

Q1. (20 points) Let V be a non-zero vector space. Show that:

(a) If f is a non-zero functional on V, then the null-space of f is a hyperspace in V.

(b) Every hyperspace in V is the null-space of some non-zero functional on V.

Q2. (25 points) Consider $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, where

T(x, y, z) = (x - 4y - 4z, 8x - 11y - 8z, -8x + 8y + 5z).

(a) Show that T is diagonalizable.

(b) Find a basis β such that $[T]_{\beta}$ is a diagonal matrix.

Q3. (25 points) Let $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be given by

T(x, y, z) = (3x + y - z, 2x + 2y - z, 2x + 2y).

Write T = D + N, where D is a diagonalizable operator on \mathbb{R}^3 and N is a nilpotent operator on \mathbb{R}^3 , such that DN = ND. Find the matrices of D and N w.r.t. the standard basis of \mathbb{R}^3 .

Q4. (20 points) Let T be a linear operator on a finite dimensional vector space $V = W_1 \oplus W_2$, such that both W_1 and W_2 are invariant under T. Set $T_1 = T_{|W_1}$, $T_2 = T_{|W_2}$ and show that:

(a) $\operatorname{char}(T) = \operatorname{char}(T_1) \operatorname{char}(T_2).$

(b) $\min(T) = \min(T_1) \min(T_2)$.

Q5. (10 points) Prove or disprove:

(a) If A is a matrix with real entries such that $A^{t}A = 0$, then A = 0.

(b) If a linear operator T has a cyclic vector, then T^2 has a cyclic vector.

GOOD LUCK