King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics Math 550: Linear Algebra First Exam, Spring Semester 152 (120 minutes) Jawad Abuhlail

Q1. (20 points) Let V be a vector space, and W_1, W_2 be two subspaces of V.

(a) Show that if W_1 and W_2 are finite dimensional, then

 $\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2).$

(b) Show that if $W_1 + W_2 = V$ and $W_1 \cap W_2 = 0$, then for every $\alpha \in V$ there exist *unique* $\alpha_1 \in W_1$ and $\alpha_2 \in W_2$ such that $\alpha = \alpha_1 + \alpha_2$.

Q2. (20 points) Let V be a finite dimensional vector space.

(a) Show that if $W \leq_F V$ is a proper subspace of V and $\alpha \in V \setminus W$, then there exists $f \in V^*$ such that f(W) = 0 but $f(\alpha) \neq 0$.

(b) Show that if W_1, W_2 are subspaces of V and $W_1^0 = W_2^0$, then $W_1 = W_2$.

Q3. (15 points) Let $\alpha_1 = (1, 1, 0), \alpha_2 = (1, 0, 1)$ and $\alpha_3 = (0, 1, 1)$.

(a) Show that $\beta = \{\alpha_1, \alpha_2, \alpha_3\}$ is a basis of \mathbb{R}^3 .

(b) Let $\alpha = (a, b, c) \in \mathbb{R}^3$. Find $[\alpha]_{\beta}$ (the coordinate matrix of α w.r.t. the *ordered* basis β).

Q4. (10 points) Let θ be a fixed angle. Show that the linear transformation

$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3, \ (x, y, z) \longmapsto (x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta, z)$$

is invertible and find its inverse.

Q5. (20 points) Consider the linear transformation

 $T: \mathbb{R}^4 \longrightarrow \mathbb{R}^3, \ (x, y, z, w) \longmapsto (z - y + z + w, 2x - 2y + 3z + 4w, 3x - 3y + 4z + 5w).$

- (a) Find the rank and the nullity of T.
- (b) Find a basis for Im(T).
- (c) Find a basis for Null(T).

Q6. (15 points) Prove or disprove:

(a) If V is a finite dimensional vector space, then any $0 \neq S \subsetneqq V$ is linearly independent.

(b) If V is an n-dimensional vector space and $T: V \longrightarrow V$ is a linear operator such that Null(T) = T(V), then n is even.

(c) If V and W are finite dimensional vector spaces and $T: V \longrightarrow W$ is a 1-1 linear transformation, then T is invertible.

GOOD LUCK