King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

MATH 531 (Real Analysis) - Final Exam - Term 152

Name:	ID Number:
Section Number:	Serial Number:
Class Time:	Instructor's Name:

Instructions:

- 1. Calculators and Mobiles are not allowed.
- 2. Write legibly.
- 3. Show all your work. No points for answers without justification.
- 4. Make sure that you have 12 pages of problems (Total of 12 Problems)

Question Number	Points	Maximum Points
1		7
2		15
3		10
4		18
5		10
6		10
7		20
8		10
Total		100

1. Define a Lebesgue measurable set. Show that the class $\mathfrak M$ of Lebesgue measurable sets is a $\sigma-$ algebra.

2. (i) Define Cantor ternary set C.

(ii) Find Lebsgue measure of C.

(iii) Show that C in uncountable.

3. Let $\{f_n\}$ be a sequence of extended real-valued measurable functions with the same domain D. Prove that $\underline{\lim} f_n$ and $\{x \in D : f_1(x) < f_2(x)\}$ are measurable.

4. The measurable function of a measurable function is not measurable. Justify this statement. 5. Let (X,β) be a measurable space and f be a real-valued function on X. If $f^{-1}(O)$ is measurable for each open set O of real numbers, then show that f is measurable.

6. Let $E = (-\infty, \infty)$, $f_n(x) = e^{-nx^2 + x}$ and

$$g(x) = \begin{cases} e & 0 \le x \le 2\\ \\ e^{-|x|} & \text{otherwise} \end{cases}$$

Then show:

(i) $f_n(x) \le g(x)$ for all n

(ii) g and f_n are integrable functions.

(iii) by means of Lebesgue dominated convergence theorem that $\lim_{n} \int_{E} f_{n} = \int_{E} \lim_{n} f_{n}.$

7. State and prove Jordan decomposition theorem.

8. Let (X, β, μ) be a σ - finite measure space and ν be a measure on (X, β) such that $\nu \ll \mu$. Then prove that there is a non-negative measurable function f on X such that

$$\nu(E) = \int_E f \, d\mu \quad \text{for all } E \in \beta.$$

Justify that the function f is unique in $[\mu]$ a.e. sense.

9. Use the information given in (Q8) to show that:

(a)
$$\int f \, d\nu = \int f \left[\frac{d\nu}{d\mu} \right] \, d\mu$$

(b)
$$\left[\frac{d(\nu_1 + \nu_2)}{d\mu}\right] = \left[\frac{d\nu_1}{d\mu}\right] + \left[\frac{d\nu_2}{d\mu}\right]$$

10. If $f \in L^p$ and $g \in L^q$ (where $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$), then show that

$$||f g||_1 = \int |f g| d\mu \le ||f||_p ||g||_q.$$

11. (a) Let μ and ν be finite measures on a measurable space (X, β) . If $\lambda = \mu + \nu$ and $F(f) = \int f d\mu$, then show that F is a well-defined and bounded linear functional on $L^2(\lambda)$.

(b) Let g be an integrable function and M be a constant such that $|\int f g| \leq M$ for all bounded measurable functions f. Then show that g is in L^q and $||g||_q \leq M$ where q is as in (Q10).

12. Prove that $L^p(1 is a Banach Space under the norm$

$$||f||_p = \left(\int |f|^p \, d\mu\right)^{1/p}.$$