King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics Math 460 Major Exam I, Semester II, 2015-2016 Net Time Allowed: 120 minutes

-Section:-

Name:-ID:----

-Serial:-

Q#	Marks	Maximum Marks
1		12
2		10
3		6
4		11
5		10
6		5
7		6
Total		60

- 1. Write clearly.
- 2. Show all your steps.
- 3. No credit will be given to wrong steps.
- 4. Do not do messy work.
- 5. Calculators and mobile phones are NOT allowed in this exam.
- 6. Turn off your mobile.

1. Let
$$A = \begin{bmatrix} 1 & -1 & 3 \\ -1 & 0 & -2 \\ 2 & 2 & 4 \end{bmatrix}$$

(a) Find elementary matrices E_1, E_2, E_3 and P such that

$$E_3 E_2 E_1 P A = U.$$

- (b) Using (a) compute the LU factorization of the matrix PA (i.e show that A = PLU)
- (c) Using (b), solve the system Ax = b, where b = (-3, 1, 0).

2. Find bases and their dimensions for the four fundamental subspaces of

$$A = \begin{bmatrix} 1 & 2 & 1 & 3 & 3 \\ 2 & 4 & 0 & 4 & 4 \\ 1 & 2 & 3 & 5 & 5 \\ 2 & 4 & 0 & 4 & 2 \end{bmatrix}$$

- 3. Let \mathcal{X} and \mathcal{Y} are two subspaces of a vector space \mathcal{V} , show the following
 - (a) $\mathcal{X} + \mathcal{Y} = \{x + y \mid x \in \mathcal{X}, y \in \mathcal{Y}\}$ is a subspace of \mathcal{V} .
 - (b) dim $(\mathcal{X} + \mathcal{Y}) = \dim(\mathcal{X}) + \dim(\mathcal{Y}) \dim(\mathcal{X} \bigcap \mathcal{Y})$
 - (c) For any conformal matrices A and B (use part(b)) to show

 $\operatorname{rank}(A+B) \le \operatorname{rank}(A) + \operatorname{rank}(B)$

4. Identify all subspaces of \mathbb{R}^2 that are invariant under $A = \begin{bmatrix} -9 & 4 \\ -24 & 11 \end{bmatrix}$

- 5. If **P** is the projector that maps each $v = (x, y, z) \in \mathbb{R}^3$ to its orthogonal projection $\mathbf{P}(v) = (x, y, 0)$ in the *xy*-plane.
 - (a) Calculate $[\mathbf{P}]_{\mathcal{BB}'}$ where the bases \mathcal{B} and \mathcal{B}' are

$$\mathcal{B} = \left\{ u_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, u_2 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, u_3 = \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$

and

$$\mathcal{B}' = \left\{ v_1 = \begin{bmatrix} -1\\0\\0 \end{bmatrix}, v_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, v_3 = \begin{bmatrix} 0\\1\\-1 \end{bmatrix} \right\}$$

(b) Find $[\mathbf{P}(w)]_{\mathcal{B}'}$, where w = (-1, 2, -1).

6. Find A^{3000} , given

$$A = \begin{bmatrix} 1 & 0 & 0 & 1/3 & 1/3 & 1/3 \\ 0 & 1 & 0 & 1/3 & 1/3 & 1/3 \\ 0 & 0 & 1 & 1/3 & 1/3 & 1/3 \\ 0 & 0 & 0 & 1/3 & 1/3 & 1/3 \\ 0 & 0 & 0 & 1/3 & 1/3 & 1/3 \\ 0 & 0 & 0 & 1/3 & 1/3 & 1/3 \end{bmatrix}$$

Hint: A square matrix C is said to be idempotent when it has the property that $C^2 = C$. Make use of idempotent submatrices in A.

- 7. Let S be a skew-symmetric matrix with real entries.
 - (a) Prove that (I S) is nonsingular. **Hint:** $x^T x = 0 \rightarrow x = 0$. (b) If $A = (I + S)(I S)^{-1}$, show that $A^{-1} = A^T$.