KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

Department of Mathematics & Statistics

SYLLABUS

MATH 442 (152)

Instructor: Prof. Bilal Chanane

Title: Calculus of Variations and Optimal Control

Credit: 3-0-3

Textbook: Optimal Control and the Calculus of Variations, E. R. Pinch, Oxford university Press, 1995

References:

- (i) Calculus of Variations, M. Gelfand and S. V. Fomin
- (ii) Variational Calculus and Optimal Control, 2nd Edition, J. L. Troutman, Springer 1996
- (iii) Calculus of Variations and Optimal Control Theory: A Concise Introduction, Daniel Liberzon, Princeton University Press, 2011

Description: Introduction to the calculus of variations. Euler-Lagrange, Weierstrass, Legendre and Jacobi necessary conditions. Formulation of optimal control problems. Bolza, Mayer and Lagrange formulations. Variational approach to optimal control. Pontryagin maximum principle. **Prerequisite:** MATH 202

Learning outcomes:

At the end of this course, the student should be able to

- 1. Formulate a variational problem,
- 2. Derive from first principles necessary conditions for an extremum in the simplest case and the case where the functional depends upon several variables and their higher order derivatives,
- 3. Solve the Euler-Lagrange equation in specific special cases.
- 4. Formulate an optimal control problem
- 5. Work with the Bolza, Mayer and Lagrange formulations
- 6. Use the variational approach to optimal control
- 7. State and work with the Pontryagin maximum principle
- 8. Use Dynamic programming in continuous time: Hamilton-Jacobi-Bellman equation.
- 9. Solve the linear quadratic regulator problem

Week#	Date	Торіс		
1	Jan. 17-21	Finite and infinite dimensional optimization,		
		Brachistochrome and isoperimeter problems		
2	Jan. 24-28	Function spaces, functionals		
3	Jan.31-Feb. 4	Variation of a functional and necessary conditions of an		
		extremum		
		The simplest variational problem and Euler-Lagrange equation		
4	Feb. 7-11 The case of several derivatives			
		The variational derivative		
5	Feb. 14-18	Invariance of Euler-Lagrange equation		
		Fixed point problem for n unknown functions		
		Major Exam I		
6	Feb. 21-25	Variational problem in parametric form		
		Functional depending on high order derivatives		
7	Feb. 28-Mar.3	Cont.		
		Variational problems with subsidiary derivatives		
8	Mar. 6-10	The general variation of a functional		
		End points lying on two different curves		
		Mid Term Vacation March 11-19, 2016		
9	Mar.20-24	Broken extremals, the Weirstrass-Erdmann conditions		
		Statement of the optimal control problem		
		Major Exam II		
10	Mar.27-31	The Pontryagin maximum principle		
11	Apr.3-7	Cont.		
12	Apr.10-14	Dynamic programming in continuous time and the Hamilton-		
		Jacobi-Bellman theory		
13	Apr.17-21	Optimal control to target curves		
		Time-optimal control		
14	Apr.24-28	Fuel-optimal control		
		Linear quadratic regulator		
15	May 1-5	Review		
		Final Exam		

Teaching strategies to be used to develop these cognitive skills

- Homework assignments involving analytic development of the notions introduced.
- Project assignment involving topics not covered in great extent in class (e.g., broken extremals) and new topics such as Bernstein theorem, Noether'theorem)

Methods of assessment of students cognitive skills

- Major and final exams
- Homework
- Project report and presentation

Schedule of Assessment Tasks for Students During the Semester

Assessment	Assessment Task	Week due	Proportion of Final Assessment
1	Class activities (participation)	Weekly	5%
2	Homework	Weekly	10%
3	Major Exam I	Week 6	20%
4	Major Exam II	Week 10	20%
5	Final Exam	Week 16	30%
6	Projects	Monthly	15%