King Fahd University of Petroleum and Minerals

Department of Mathematics and Statistics

Math 430 Final Exam – 2015–2016 (152)

Allowed Time: 180 minutes

Name:	
ID #:	
Section #:	Serial Number:

Instructions:

- 1. Write clearly and legibly. You may lose points for messy work.
- 2. Show all your work. No points for answers without justification.
- 3. Calculators and Mobiles are not allowed.

Problems:

Question $\#$	Grade	Maximum Points
1		12
2		12
3		10
4		12
5		12
6		14
7		16
8		12
Total:		100

Q:1 (3 + 3 + 3 + 3 points) (a) If log (- e i) = a + ib, find a and b. (b) Solve: 2 cosh z + sinh z = 2. (c) Solve $z^2 = 4i$.

- (d) Show that $i\pi$ is a period for the periodic function $f(z) = \coth z$.

Q:2 (6 + 6 points) (a) If $f(z) = e^x \cos y + iv(x, y)$ is an analytic function for any z. Find v(x, y) and write f(z) in terms of z.

(b) Evaluate $\int_C \text{Im}(z+i) \, dz$, where C is the circular arc (in the first quadrant) along |z| = 1 from z = 1 to z = i.

 ${\bf Q:3}$ (10 points) Use Cauchy's integral formula to evaluate

$$\int_{\tau} \frac{z+1}{z^4 + 2iz^3} \, dz,$$

where τ is the circle |z| = 1.

Q:4 (12 points) Expand $f(z) = \frac{1}{1-z}$ in a Taylor series with center $z_0 = 2i$. Also, find the circle of convergence of the Taylor series by ratio test.

Q:5 (8 + 4 points) (a) Expand $f(z) = \frac{1}{z (1-z)}$ in a Laurent series valid for 1 < |z-2| < 2. (b) Show that z = 0 is removable singularity of $f(z) = \frac{\sin 5z - 5z}{z^2}$ **Q:6** (7 + 7 points)(a) State the Cauchy's residue theorem and use it to evaluate

(b) Evaluate
$$\int_{0}^{2\pi} \frac{1}{(2 + \cos \theta)^2} d\theta$$
.

Q:7 (8 + 8 points) (a) Let $|F(z)| \leq \frac{M}{R^k}$ for $z = Re^{i\theta}$, where k > 0 and M are constants. Prove that

$$\lim_{R\to\infty} \int_{\tau} e^{imz} F(z) dz = 0,$$

where τ is the semicircular arc of radious R $(0 \le \theta \le \pi)$ and m is constant.

(b) Evaluate
$$\int_0^\infty \frac{dx}{x^6 + 1}$$
 .

Q:8 (2 + 6 + 4 points) (a) State the Argument principle.

- (b) State and prove Rouche's theorem. (c) Show that $z^3 + 9z + 27 = 0$ has no roots in |z| < 2.