King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Math 430 Major Exam I The Second Semester of 2015-2016 (152)

Time Allowed: 90 Minutes

Name:	ID#:
Section/Instructor:	Serial #:

- Mobiles and calculators are not allowed in this exam.
- Provide all necessary steps required in the solution.

Question $\#$	Marks	Maximum Marks
1		4
2		4
3		5
4		4
5		4
6		5
7		4
8		5
9		5
10		4
11		6
Total		50

1 (4 points) Express $\left[\frac{1+i}{i-(1-2i)}\right]^2$ in terms of rectangular and polar forms.

(2) (4 points) If $z_1 = 2 + i$, $z_2 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$, then evaluate $z_1^3 - 3z_2^2 - 4Z_1 + 8$.

(3) (5 points) Prove that $||z_1| - |z_2|| \le |z_1 - z_2|$.

(4) (4 points) Solve the following system for z_1 and z_2 and write your answer in standard form a + ib:

$$iz_1 - iz_2 = 2 + 10i$$

 $-z_1 + (1 - i)z_2 = 3 - 5i$

(5) (4 points) Find the roots of $(-1+i)^{\frac{1}{3}}$ and locate them graphically.

(6) (5 points) (a) Define " Domain and open set " in the complex plane.

(b) Is the set 0 < |z - 2| < 3 a domain and open set? Give reason.

(7) (4 points)Let a set D be a domain set. Prove that a real valued function $U: D \to R$ is constant if $U_x = U_y = 0$ on D.

(8) (5 points) Find the image of the line x = 1 under the mapping $w = z^2$ and represent the mapping graphically.

(9) (5 points) Find the area of the rectangle whose vertices are the roots of the equation

$$z\bar{z}^3 + \bar{z}z^3 = 350,$$

where Re(z) and Im(z) are integers.

(10) (4 points) Use $\epsilon - \delta$ definition to show that $\lim_{z \to 1-i} (2+i)z = 3-i$

(11) (6 points) Let complex numbers α and $\frac{1}{\bar{\alpha}}$ lie on the circles $|z - z_0| = r$ and $|z - z_0| = 2r$, respectively. If $z_0 = x_0 + iy_0$ satisfies the equation $2|z_0|^2 = r^2 + 2$, then find the value of $|\alpha|$.