KFUPM - Department of Mathematics and Statistics MATH 345, Term 152 Final Exam (Out of 140), Duration: 180 minutes NAME: ID:

Solve the following Exercises.

Exercise 1 (15 points 5-5-5): Let G be a finite cyclic group.

(1) If 5 divides |G|, How many elements of order 5 does G have? Justify.

(2) If 9 divides |G|, How many elements of order 9 does G have? Justify.

(3) If a is an element of G with |a| = 9. Find all other elements of order 9 of G. Justify.

Exercise 2 (15 points 5-5-5): Let $G = \mathbb{Z}_{16}$ and $G' = \mathbb{Z}_2 \bigoplus \mathbb{Z}_8$. (1) Find all elements of order 4 of G.

- (2) Find all elements of order 4 of G'.
- (3) Are G and G' isomorphic? Justify.

Exercise 3 (25 points 5-5-5-5): Let R be an integral domain and M and N two distinct maximal ideals of R.

(1) Prove that $M^2 + N^2 = R$.

(2) Prove that $MN = M \cap N$.

(3) Let $\phi : R \longrightarrow R/M \times R/N$ be the ring homomorphism defined by $\phi(a) = (\bar{a}[M], \bar{a}[N])$ (where $\bar{a}[M]$ is the class of $a \mod M$, $\bar{a}[N]$ is the class of $a \mod N$). Prove that $ker(\phi) = MN$.

(4) Prove that ϕ is onto. [Hint, if $(\bar{x}[M], \bar{y}[N])$ is an element of $R/M \times R/N$, use 1 = a + b for some $a \in M$ and $b \in N$ to find an element $z \in R$ such that $\phi(z) = (\bar{x}[M], \bar{y}[N])$.

(5) Prove that R/MN is isomorphic to $R/M \times R/N$. (Hint: Use the First Isomorphism Theorem applied to ϕ)

Exercise 4 (10 points 5-5): (1) Prove that the additive groups $(\mathbb{Z}[\sqrt{2}], +)$ and $(\mathbb{Z}[\sqrt{3}], +)$ are isomorphic.

(2) Prove that the rings $(\mathbb{Z}[\sqrt{2}], +, \times)$ and $(\mathbb{Z}[\sqrt{3}], +, \times)$ are not isomorphic.

Exercise 5 (20 points, 5-5-5-5): Let D be an integral domain and K a field.

(1) Prove that K[X] is a *PID* (Principal Ideal Domain).

(2) Prove that D[X] is a *PID* if and only if D is a field.

(3) Let $I = \{f(X) \in K[X] | f(a) = 0 \text{ for all } a \in K\}$. Prove that I is an ideal of K[X].

(4) Assume that K is finite. Find a monic polynomial $g \in K[X]$ such that I = (g).

Exercise 6 (25 points, 5-5-5-5): (1) Prove that $f = X^3 + X^2 + 1$ is irreducible over \mathbb{Z} .

- (2) Prove that $X^7 + 343X^5 + 7X^3 + 49X + 14$ is irreducible over Q. (3) Prove that $Q[X]/(X^2 2)$ is isomorphic to $Q[\sqrt{2}]$. $(Q[\sqrt{2}] = \{a + b\sqrt{2} | a, b \in \mathbb{Q})$ (4) Prove that $Q[\sqrt{2}]$ is a field. (5) Prove that the ideal $(X^2 2)$ is a maximal ideal of $\mathbb{Q}[X]$.

- **Exercise 7** (20 points, 5-5-5-5): Let $D = \mathbb{Z}[\sqrt{-5}]$. (1) Prove that $1 + \sqrt{-5}$ and $1 \sqrt{-5}$ are irreducible but not prime.
- (2) Prove that 2 and 3 are irreducible in D.
- (3) Find two factorizations of 6 in D.
- (4) Is D = UFD (Unique Factorization Domain)? Justify.

Exercise 8 (10 points, 5-5): Let R be a PID, $I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq \ldots$ be a chain of ideals of R and $I = \bigcup_{n \ge 1} I_n$. (1) Prove that I is an ideal of R. (2) Prove that there is there is a positive integer n_0 such that $I_n = I_{n_0}$ for all

 $n \ge n_0$.