KFUPM - Department of Mathematics and Statistics MATH 345, Term 152 Exam I (Out of 100), Duration: 120 minutes

NAME: ID:

Solve the following Exercises.

Exercise 1 (15 points: 5-5-5). Let G be the multiplicative group. Prove that G is abelian under each one of the following conditions:

(1) $(ab)^2 = a^2b^2$ for every $a, b \in G$.

(2) For every a, b, c in G, ab = ca implies that b = c.

(3) The map $f: G \longrightarrow G$ defined by $f(x) = x^{-1}$ is an isomorphism.

Exercise 2 (20 points 7-6-7). Let G be a finite group with order p^n where p is a positive prime integer and n is a positive integer.

(1) Prove that the center $\mathcal{Z}(G)$ of G cannot be of order p^{n-1} .

(2) Assume that G is cyclic and has exactly three subgroups, $\{e\}$, H and G. Find n.

(3) Find a noncyclic group G such that $|G| = p^2$ for some positive integer prime p and G has exactly 4 proper subgroups.

 $\mathbf{2}$

Exercise 3 (20 points 5-5-5-5). Let G be a cyclic group with order n = 16.

(1) Prove that G cannot have more that 8 elements x such that $x^8 = e$. (2) Prove that G cannot have more that 4 elements y such that $y^4 = e$.

(3) Find a noncyclic group H of order 4 which has 3 elements of order 2 but no element of order 4.

(1) Find an infinite abelian multiplicative group which has exactly two elements of order 4.

Exercise 4 (15 points 7-7-6). Let G be an abelian finite group such that |G| = 10. (1) Is G a cyclic group? Justify.

(2) If G is an abelian group with G = pq where $p \neq q$ are prime integers, is G a cyclic group?

(3) If $|G| = p^2$ for some positive prime integer p, does G contain an element of order p^2 ? Is G cyclic? Justify.

Exercise 5 (15 points 5-5-5). (1) Let G be a group of permutations of a set A and let $a \in A$. Set $stab(a) = \{\sigma \in G | \sigma(a) = a\}$. Prove that stab(a) is a subgroup of G. In the symmetric group S_4 , find:

(2) A cyclic group of order 4.

(3) A non-cyclic group of order 4.

Exercise 6 (15 points 5-5-5).

(1) Prove that the additive group $(\mathbb{Q}, +)$ cannot be isomorphic to the multiplicative group $(\mathbb{R}^{+*}, .)$

(2) Show that \mathbb{Z} has infinitely many subgroups isomorphic to \mathbb{Z} .

(3) Find two groups G and H such that G is not isomorphic to H but Aut(G) is isomorphic to Aut(H).