King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Math 301 Major Exam 1 The Second Semester of 2015-2016 (152)

Time Allowed: 120 Minutes

ID#:	
#: Serial #:	
;	

- Mobiles and calculators are not allowed in this exam.
- Write all steps clear.

Question $\#$	Marks	Maximum Marks
1		12
2		14
3		14
4		15
5		15
6		15
7		15
Total		100

Q:1 (6+6 points) Given the position vector $\vec{r}(t) = 2\sqrt{2}t \hat{i} + e^{2t}\hat{j} + e^{-2t}\hat{k}$ of a curve C:

(a) Find
$$\frac{d}{dt} \left[\vec{r}(t) \times \vec{r'}(t) \right]$$
 at $t = 0$.

(b) Find the length of the curve for $0 \le t \le 2$.

- **Q:2** (8+6 points) Let $f(x, y, z) = xy 3y^2z + x^2z$.
 - (a) Find the directional derivative of f(x, y, z) at (1, -1, 0) in the direction of $\hat{i} + 2\hat{j} + 3\hat{k}$.
 - (b) Find the direction in which the function f(x, y, z) decreases most rapidly at (1, 1, 1) and the value of minimum rate of change at this point.

Q:3 (6+8 points) Let g(x, y, z) = xyz and $\vec{F} = y \hat{i} - x \hat{j} + z; \hat{k}$. Calculate

- (a) $\nabla\cdot(g\vec{F})$ at (0,1,1)
- (b) $\nabla \times (g\vec{F})$ at (1,1,1).

Q:4 (15 points) Find work done by the force $\vec{F} = (y + yz\cos x)\hat{i} + (x + z\sin x)\hat{j} + y\sin x\hat{k}$ along the curve $\vec{r}(t) = 2t\hat{i} + (1 + \cos t)\hat{j} + 4\sin t\hat{k}$ for $0 \le t \le \frac{\pi}{2}$. Q:5 (15 points) Use Green's theorem to evaluate the line integral

 $\oint_C (-16y + \sin x^2) dx + (4e^y + 3x^2) dy$, where C is the positively oriented boundary of the region bounded by the graphs of y = x, y = -x, and $x^2 + y^2 = 4$ with $y \ge 0$.

Q:6 (15 points) Use Stokes' theorem to evaluate the integral $\oint_C \vec{F} \cdot d\vec{r}$ where $\vec{F} = y^3 \hat{i} - x^3 \hat{j} + z^3 \hat{k}$ and *C* is the trace of the cylinder $x^2 + y^2 = 1$ in the plane x + y + z = 1 **Q:7** (15 points) Use divergence theorem to evaluate $\iint_{S} (\vec{F}.\hat{n}) dS$

where $\vec{F} = z^2 \sin y \,\hat{i} + 5x^2 z \,\hat{j} + 3z^2 \,\hat{k}$ and D the region bounded by the surface S given by $z = \sqrt{9 - x^2 - y^2}, \, x^2 + y^2 = 4, \, z = 0.$