KFUPM, DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH 232: FINAL EXAM, SEMESTER (152), MAY 11, 2016

08:00-11:00 am

Name :

ID :

Exercise	Points
1	: 10
2	: 10
3	: 10
4	: 15
5	: 10
6	: 10
7	: 15
8	: 10
9	: 15
10	: 10
11	: 10
12	: 15
Total	: 140

Exercise 1 (10 pts). Let $f : \mathbb{Z}_{\geq 0} \longrightarrow \mathbb{R}$ be a function defined recursively by:

$$f(0) = 3, f(k+1) = 2f(k) + 2k - 4.$$

Show that

$$f(n) = 2^n - 2n + 2,$$

for each integer ≥ 0 .

Exercise 2 (10 pts). Let R be the binary relation defined on \mathbb{Z} by:

$$a \to b$$
 iff $3 \mid (a^2 - b^2)$.

(1) Show that R is an equivalence relation.

(2) Show that the quotient set \mathbb{Z}/\mathbb{R} is of cardinality 2.

Exercise 3 (10 pts). Prove that the function $f : \mathbb{R} \setminus \{11\} \longrightarrow \mathbb{R} \setminus \{9\}$ defined by $f(x) = \frac{9x-1}{x-11}$ is a bijection and find its inverse function f^{-1} .

Exercise 4 (15 pts). Find the number of integers between 1 and 1000 that are neither even nor multiple of 3 nor multiple of 5 nor multiple of 7.

Exercise 5 (10 pts). Show that among 2196 people, at least 6 were born on the same day of the year.

Exercise 6 (10 pts). Find all integers x, y such that

142x - 71y = 213.

Exercise 7 (15 pts). Let $\mathbb{I} = (0, 1)$ be the unit interval. The decimal representation of an $x \in \mathbb{I}$ is

$$x = \sum_{n=1}^{\infty} a_n 10^{-n},$$

where a_n are digits (in $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$).

(1) We define the function $f : \mathbb{I} \times \mathbb{I} \longrightarrow \mathbb{I}$ by

$$f(\sum_{n=1}^{\infty} a_n 10^{-n}, \sum_{n=1}^{\infty} b_n 10^{-n}) = \sum_{n=1}^{\infty} c_n 10^{-n},$$

where $c_{2n-1} = a_n$ and $c_{2n} = b_n$ for each positive integer n. Show that f is injective.

(2) Deduce from (1) that $\mathbb{R} \times \mathbb{R}$ and \mathbb{R} have the same cardinality.

Exercise 8 (10 pts). Find all integers x such that $15x \equiv 5 \pmod{50}$.

Exercise 9 (15 pts). Let * be the binary operation defined on $\mathbb{R} \setminus \{1\}$ by :

$$a * b = a + b - ab.$$

Show that $(\mathbb{R} \setminus \{1\}, *)$ is an Abelian group.

13

_

Exercise 10 (10 pts). Show that $(0,1) \setminus \{\frac{1}{n} : n \in \mathbb{N}\}\$ and \mathbb{R} have the same cardinality.

Exercise 11 (10 pts). Let *H* be a subgroup of S_4 . Show that |H| belongs to $\{1, 2, 3, 4, 6, 8, 12, 24\}$.

Exercise 12 (15 pts). Let U(16) be the set of all $x \in \mathbb{Z}_{16}$ having an inverse for the multiplication.

- (1) List all the elements of U(16).
- (2) Give the table of multiplication on U(16).
- (3) Find the order of each element of U(16).
- (4) Is U(16) a cyclic group? Justify your answer.
- (5) Is there a subgroup of U(16) of order 6? Justify your answer.

17

19

_