KFUPM, DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH 232: EXAM 4, SEMESTER (152), APRIL 30, 2016

06:30–09:30 pm

Name :

ID :

PART A

Exercise 1 (6 pts). Consider the relation $R = \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid x + 4y \text{ is odd}\}.$

- (1) Define the relation R^{-1} .
- (2) Is $R = R^{-1}$?

Exercise 2 (6 pts). Let R be an equivalence relation on a set A and $B \subseteq A$. Set $S = R \cap (B \times B)$.

- (1) Show that S is an equivalence relation on B.
- (2) Show that for all $x \in B$, $[x]_S = [x]_R \cap B$.

Exercise 3 (10 pts). Let $a, b \in \mathbb{Z}$. Show that the relation R defined on \mathbb{Z} by: aRb iff $a^2 + b^2$ is even

is an equivalence relation and determine its distinct equivalence classes.

Exercise 4 (10 pts). Give the addition and multiplication tables on \mathbb{Z}_9 . Find all integers x such that $6x \equiv 3 \pmod{9}$. **Exercise 5** (8 pts). Let $g: \mathbb{Z} \longrightarrow \mathbb{Z}$ be the function defined by: g(x) = 4x + 1.

- (1) Determine g(E), where E is the set of all even integers. Is $11 \in g(E)$?
- (2) Determine $g^{-1}(\mathbb{N})$, $g^{-1}(E)$ and $g^{-1}(O)$, where O is the set of all odd integers.

Exercise 6 (10 pts). Let $f : A \longrightarrow B$ be a function.

- (a) Show that f is injective if and only if $f^{-1}(f(C)) = C$, for all $C \subseteq A$.
- (b) Show that f is surjective if and only if $f(f^{-1}(D)) = D$, for all $D \subseteq B$.

Exercise 7 (10 pts). Let $f : \mathbb{R} \setminus \{11\} \longrightarrow \mathbb{R} \setminus \{7\}$, defined by $f(x) = \frac{7x+1}{x-11}$. Show that f is a bijection and find f^{-1} .

PART B

Exercise 8 (10 pts). Let $n \ge 2$ be an integer. Using the **PHP** (Pigeonhole Principle), prove that in a collection of n + 1 distinct integers, there are distinct integers x and y such that x - y is a multiple of n.

Exercise 9 (10 pts). Find the number of positive integers x between 1 and 10^4 such that $7 \nmid x$ and $13 \nmid x$.

Exercise 10 (10 pts). Let $A = \{1, 2, 3\}$. Find the distinct equivalence classes of the equivalence relation ~ defined on S = P(A) by:

 $E \sim F$ iff |E| = |F|.

Exercise 11 (10 pts).

- (1) Give an explicit injection from $\mathbb{N} \times \mathbb{N}$ into \mathbb{N} .
- (2) For any integer $k \ge 3$ give an explicit injection from $\mathbb{N} \times \mathbb{N} \times \mathbb{N} \dots \times \mathbb{N}$ (k times) into \mathbb{N} .
- (3) Deduce that $\mathbb{N} \times \mathbb{N} \times \mathbb{N} \dots \times \mathbb{N}$ and \mathbb{N} have the same cardinality.

Exercise 12 (10 pts). Let $A = \{1, 2, 3, 4, 5, 6\}$ and $B = \{a, b, c, d, e\}$.

- (1) Find all the equivalence relations on A with exactly 5 distinct equivalence classes.
- (2) Show that if $f : A \longrightarrow B$ is an onto map then $\{f^{-1}(\{b\}) \mid b \in B\}$ is a partition of A.
- (3) How many onto maps are there from A to B?

•

Exercise 13 (10 pts). Let a < b be real numbers and a < c < b. Show that $]a, b[\setminus \{c\}$ and \mathbb{R} have the same cardinality.

17
