KFUPM, DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH 232: EXAM III, SEMESTER (152), MARCH 22, 2016

Name :

ID :

Allowed Time : 1H 30mn

Exercise	Points
1	: 8
2	: 15
3	: 7
4	: 10
5	: 10
6	: 10
Total	: 60

Exercise 1. Let $a, b \in \mathbb{R} \setminus \{0\}$. Show that the statement

If
$$x, y > 0$$
 then $\frac{a^2}{2b^2}x^2 + \frac{b^2}{2a^2}y^2 > xy$

is false.

Exercise 2.

(1) Sow that if n is an integer which is not a perfect square int, then $\sqrt{n} \notin \mathbb{Q}$.

(2) Sow that $\sqrt{5} + \sqrt{7} \notin \mathbb{Q}$.

(3) Sow that $\{a+b\sqrt{5}: a, b \in \mathbb{Q}\} \cap \{p+q\sqrt{7}: p, q \in \mathbb{Q}\} = \mathbb{Q}.$

Exercise 3. Disprove the statement: There exists an integer n such that $n^2 + 3n + 3$ is even.

Exercise 4. Use Mathematical induction to show that, for every positive integer n, $3 \times 5^{2n+1} + 2^{3n+1}$

is a multiple of 17.

Exercise 5. Let $0 \le a \le 1$. Use Mathematical induction to show that, for each positive integer n,

$$(1-a)^n \ge 1 - na.$$

Exercise 6. Let (a_n) be the sequence defined recursively by.

 $a_1 = 4, a_2 = 9$ and $a_{n+1} = 2a_n - a_{n-1} + 2$, for $n \ge 3$.

Find a formula for a_n .