KFUPM--Term 152

Math 201 Quiz	# 1(a)	Fime: 20 minutes		Date: 2-2-16
Name	ID #	Sr #	Sec.	Marks:- / ₈

Q 1. Find a parametrization for the line through the point (-5,5) having slope $\frac{5}{6}$.

Q2. Find the length of the curve C : $x = 8 \cos t + 8t \sin t$, $y = 8 \sin t - 8t \cos t$, $0 \le t \le \frac{\pi}{2}$.

KFUPM-----Term 152

Math 201	Quiz # 1(b)	Time: 20 minutes	Date: 2-2-16
Name	ID	Sr # Sec.	Marks:- / ₈

Q 1. Convert the parametric equations

 $x = 2 \sec t, y = 2 \tan t, -\frac{\pi}{2} < t < \frac{\pi}{2}$ into Cartesian(rectangular) equation. Sketch the curve and indicate the direction in which it is traced.

Q2. Find an equation of the tangent line at $t = \pi$ for the curve

 $x \sin t + 2x = t, \qquad y = t \sin t - 2t.$

KFUPM----Term 152

Math 201	Quiz # 1(c)	Time: 20 minutes	Date: 2-2-16
Name	ID #	Sr # Sec.	Marks:- / ₈

Q1 Find a parametrization for the line segment with endpoints (-1,3) and (3,-2).

Q2. Find the area of the surface obtained by rotating the curve (about the x-axis) $x = \cos t$, $y = 2 + \sin t$, $0 \le t \le 2\pi$.

KFUPM----Term 152

Math 201	Quiz # 1(d)	Time: 20 minutes	S	Date: 2-2-16
Name	ID #	Sr #	Sec.	Marks:- / ₈

Q 1. Convert the parametric equations

 $x = 4 \sin t$, $y = 5 \cos t$, $0 \le t \le \pi$ into Cartesian (rectangular) equation. Sketch the curve and indicate the direction in which it is traced.

Q2. Find
$$\frac{d^2y}{dx^2}$$
 at $t = 1$ when $x = t - t^2$, $y = t - t^3$.