King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

> Math 102 Final Exam Term 152 Tuesday 17/05/2016

EXAM COVER

Number of versions: 4 Number of questions: 28 Number of Answers: 5 per question

This exam was prepared using mcqs For questions send an email to Dr. Ibrahim Al-Lehyani (iallehyani@kaau.edu.sa) King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

> Math 102 Final Exam Term 152 Tuesday 17/05/2016 Net Time Allowed: 180 minutes

MASTER VERSION

Math 102, Term 152, Final Exam

MASTER

1. The definite integral $\int_{-1}^{5} 3x + 2 \, dx$ is equal to

(a)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{6}{n} \left(\frac{18i}{n} - 1 \right)$$

(b)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{6}{n} \left(\frac{6i}{n} + 1 \right)$$

(c)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n} \left(\frac{18i}{n} - 4 \right)$$

(d)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n} \left(\frac{6i}{n} - 3 \right)$$

(e)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{6}{n} \left(\frac{18i}{n} + 5 \right)$$

- 2. Let A be the exact area below a curve over the interval [0, 1] and let B be an estimation of the same area using left endpoints of 10 subintervals . For which one of the following curves B is greater than A?
 - (a) $\cos x$
 - (b) $\sin x$
 - (c) e^x
 - (d) *x*
 - (e) \sqrt{x}

$$3. \quad \int \sin^3 x \cos^2 x \, dx =$$

(a)
$$\frac{1}{5}\cos^5 x - \frac{1}{3}\cos^3 x + C$$

(b) $\frac{1}{4}\cos^4 x - \frac{1}{3}\sin^3 x + C$
(c) $\frac{1}{4}\cos^4 x - \frac{1}{6}\cos^6 x + C$
(d) $\frac{1}{3}\cos^3 x + \frac{1}{2}\sin^2 x + C$
(e) $-\cos^3 x\sin^2 x + C$

4.
$$\int_0^{\pi/4} \tan x \ln(\cos x) dx =$$

(a)
$$-\frac{1}{8}(\ln 2)^2$$

(b) $\sqrt{2}\ln 2$
(c) $2\sqrt{2}$
(d) -1
(e) 0

5. If g is a continuous function so that $\int_{\pi}^{2x} \cos\left(\frac{t}{2}\right) g(t) dt = \frac{x}{2} \sin x - \frac{\pi}{4}, \text{ then } g(2\pi) =$ (a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ (c) $-\pi$ (d) $\frac{1+\pi}{2}$ (e) $\frac{-1+\pi}{4}$

- 6. The area enclosed by the curves $x = 2y^2$ and $x = 4 + y^2$ is equal to
 - (a) $\frac{32}{3}$ (b) $\frac{31}{3}$ (c) $\frac{29}{3}$ (d) $\frac{28}{3}$ (e) $\frac{26}{3}$

7. The improper integral $\int_1^\infty \frac{e^{1/x}}{x^2} dx$

- (a) converges to e 1.
- (b) converges to $1 \frac{1}{e}$.
- (c) converges to e.
- (d) converges to 1.
- (e) diverges.

8. The area of the surface obtained by revolving the curve $y = \ln(\sec x), \ 0 \le x \le \pi/3$ about the y-axis is

(a)
$$2\pi \int_{0}^{\pi/3} x \sec x \, dx$$

(b) $2\pi \int_{0}^{\pi/3} \ln(\sec x) \sec x \, dx$
(c) $2\pi \int_{0}^{\pi/3} \sec x \, dx$
(d) $2\pi \int_{0}^{\pi/3} x \tan x \, dx$
(e) $2\pi \int_{0}^{\pi/3} \ln(\sec x) \tan x \, dx$

9. If the velocity of a moving particle is $v(t) = t^2 + 5t - 6$ in m/s, then the total distance travelled by the particle during the time interval $0 \le t \le 4$ is

(a)
$$\int_{1}^{4} t^{2} + 5t - 6 dt - \int_{0}^{1} t^{2} + 5t - 6 dt$$

(b) $\int_{0}^{1} t^{2} + 5t - 6 dt - \int_{1}^{4} t^{2} + 5t - 6 dt$
(c) $\int_{1}^{4} t^{2} + 5t - 6 dt$
(d) $\int_{0}^{4} t^{2} + 5t - 6 dt$
(e) $\int_{0}^{1} t^{2} + 5t - 6 dt$

10. The volume generated by rotating the region bounded by $y = \ln x, x = e$, and y = 0 about the y-axis is

(a)
$$\frac{\pi}{2}(e^2 + 1)$$

(b) $\frac{\pi}{18}(2e^3 + 1)$
(c) $\frac{\pi}{2}(2e^2 - 1)$
(d) $\frac{\pi}{18}(e^3 - 1)$
(e) $\pi(2e^2 + 1)$

11.
$$\int_0^{\pi/2} \sinh x \sin x \, dx =$$

(a)
$$\frac{1}{2} \cosh\left(\frac{\pi}{2}\right)$$

(b) $2 \sinh\left(\frac{\pi}{2}\right)$
(c) $\frac{1}{2} \left[\cosh\left(\frac{\pi}{2}\right) - \sinh\left(\frac{\pi}{2}\right)\right]$
(d) $2 \left[\cosh\left(\frac{\pi}{2}\right) + \sinh\left(\frac{\pi}{2}\right)\right]$
(e) 0

12.
$$\int_{1}^{\sqrt{2}} \frac{\sqrt{x^2 - 1}}{x^2} dx =$$

(a)
$$\ln(\sqrt{2}+1) - \frac{\sqrt{2}}{2}$$

(b) $\ln(\sqrt{3}+2) - \frac{\sqrt{3}}{2}$
(c) $\ln(\sqrt{2}) + \frac{\sqrt{2}}{2}$
(d) $\ln(\sqrt{3}) + \frac{\sqrt{3}}{2}$
(e) $\ln(\sqrt{2}+2) - \frac{\sqrt{2}}{2}$

$$13. \qquad \int \frac{x+2}{x^2+4} dx =$$

(a)
$$\ln \sqrt{x^2 + 4} + \tan^{-1} \left(\frac{x}{2}\right) + C$$

(b) $\ln |x - 2| + C$
(c) $\ln(x^2 + 4) + 2 \tan^{-1} x + C$
(d) $\ln \sqrt{x^2 + 4} + C$
(e) $\ln(x^2 + 4) + \frac{1}{2} \tan^{-1} \left(\frac{x}{2}\right) + C$

14. The length of the curve $y = \frac{1}{3} + \frac{4}{3}x^{3/2}$, $0 \le x \le 2$ is

(a)
$$\frac{13}{3}$$

(b) $\frac{13}{2}$
(c) $\frac{52}{3}$
(d) $\frac{26}{3}$
(e) $\frac{15}{2}$

15.
$$\lim_{n \to \infty} \frac{1^3 + 2^3 + \ldots + n^3}{n^4 - 5n} =$$
(a) $\frac{1}{4}$
(b) $\frac{1}{5}$
(c) 1
(d) 0

(e) does not exist

16. The series
$$\sum_{n=1}^{\infty} \frac{6}{9n^2 - 3n - 2}$$
 is

- (a) convergent and its sum is 2.
- (b) convergent and its sum is 1.
- (c) convergent and its sum is 2/3.
- (d) convergent and its sum is 6.
- (e) divergent.

17. If $s_n = n \sin(1/n)$ is the sequence of partial sums of the series $\sum_{n=1}^{\infty} a_n$, then

(a)
$$\lim_{n \to \infty} a_n = 0.$$

(b) the series
$$\sum_{n=1}^{\infty} a_n$$
 is divergent.

(c) the series $\sum_{n=1}^{\infty} a_n$ is convergent and its sum is 0.

(d)
$$\lim_{n \to \infty} s_n = 0.$$

(e)
$$\lim_{n \to \infty} a_n$$
 does not exist.

18. The series
$$\sum_{n=1}^{\infty} \frac{n^3}{(n^2+n)^q}$$
 is convergent for

- (a) q > 2(b) $q \ge 2$
- (c) q < 2
- (d) $q \leq 2$
- (e) q = 2

- 19. Which one of the following statements is TRUE for the series $\sum_{n=1}^{\infty} \frac{\cos^2 n}{1+n^2}$, where $f(x) = \frac{\cos^2 x}{1+x^2}$?
 - (a) The integral test is not applicable because f is not decreasing on $[1, \infty)$.
 - (b) The series converges by the integral test.
 - (c) The series diverges by the integral test.
 - (d) The integral test is not applicable because f is not positive on $[1, \infty)$.
 - (e) The integral test is not applicable because f is discontinuous on $[1, \infty)$.

20. Let $\sum_{n=1}^{\infty} (-1)^n b_n$, where $b_n > 0$, be an alternating series. If the sequence $\{b_n\}$ converges to a non zero number, then

- (a) the series diverges by the test for divergence.
- (b) the series diverges by the alternating series test.
- (c) the series conditionally converges.
- (d) the series absolutely converges.
- (e) the series diverges by the root test.

Math 102, Term 152, Final Exam

MASTER

21. The series
$$\sum_{n=0}^{\infty} \frac{(n!)^2}{(2n+1)!}$$

- (a) converges by the ratio test.
- (b) diverges by the alternating series test.
- (c) conditionally converges.
- (d) converges by the integral test.
- (e) diverges by the test for divergence.

22. The series
$$\sum_{n=1}^{\infty} \frac{\sin\left(\frac{n\pi}{2}\right)}{n^{2/3}}$$

(e) diverges by the ratio test.

Math 102, Term 152, Final Exam

MASTER

23. The interval of convergence of the series $\sum_{n=1}^{\infty} \frac{3^n}{n} (2x-1)^n$ is

(a)
$$\left[\frac{1}{3}, \frac{2}{3}\right)$$

(b) $\left(\frac{1}{3}, \frac{2}{3}\right)$
(c) $\left(-\frac{1}{3}, \frac{1}{3}\right)$
(d) $\left(-\frac{1}{3}, \frac{1}{3}\right]$
(e) $\left(-\infty, \infty\right)$

24. For |x| < 1, a power series representation of $f(x) = x \tan^{-1} x$ is

(a)
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+2}}{2n+1}$$

(b)
$$\sum_{n=0}^{\infty} \frac{x^{2n+2}}{2n+1}$$

(c)
$$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}$$

(d)
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n+2}}{2n}$$

(e)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n+1}}{2n}$$

- 25. The radius of convergence of the series $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{-n^2} x^n$ is
 - (a) e
 - (b) $\frac{1}{e}$ (c) ∞ (d) e^2
 - (e) $\frac{1}{e^2}$

26. If $f(x) = \frac{1}{1+x}$ has a power series expansion at x = 2, then its Taylor series centered at x = 2 is

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{3^{n+1}} (x-2)^n$$

(b)
$$\sum_{n=0}^{\infty} (-1)^n (x-2)^n$$

(c)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} (x-2)^n$$

(d)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} (x-2)^n$$

(e)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{3^n} (x-2)^n$$

- 27. If P(x) is the sum of the first three non zero terms of the Maclaurin series of $f(x) = (1+x)^{-1/2} \cos x$, then P(1/2) = (Hint: You may use the product of the Maclaurin series of $\cos x$ and $(1+x)^{-1/2}$.)
 - (a) $\frac{23}{32}$ (b) $\frac{16}{17}$ (c) $\frac{25}{32}$ (d) $\frac{33}{34}$ (e) $\frac{9}{4}$

28. The sum of the series $\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{4^n (2n+1)!}$ is

- (a) 2
- (b) -2
- (c) 1
- (d) -1
- (e) 0

Q	MM	V1	V2	V3	V4
1	a	a	d	b	a
2	a	е	е	d	a
3	a	d	b	a	b
4	a	е	b	a	d
5	a	b	е	с	с
6	a	b	с	b	b
7	a	d	d	е	d
8	a	b	b	е	с
9	a	b	d	a	a
10	a	b	b	е	е
11	a	b	a	d	с
12	a	d	d	b	a
13	a	d	с	е	a
14	a	е	d	с	a
15	a	d	a	a	е
16	a	a	a	с	b
17	a	с	a	a	b
18	a	с	a	a	a
19	a	с	с	с	b
20	a	с	a	a	d
21	a	е	с	е	с
22	a	d	с	b	e
23	a	d	b	е	d
24	a	d	a	е	d
25	a	е	b	a	d
26	a	a	a	с	a
27	a	a	b	a	b
28	a	b	с	b	e