King Fahd University Of Petroleum & Minerals Department Of Mathematics And Statistics STAT501 : Probability and Mathematical Statistics (151) First Exam Monday October 12, 2015 Name:

Question Number	Full Mark	Marks Obtained
One	12	
Two	8	
Three	18	
Four	7	
Five	8	
Six	14	
Seven	11	
Eight	12	
Total	90	

Question.1 (4+4+4=12-Points)

Let $\Omega = \{a, b, c, d\}$ be the space of a random experiment.

(a) Find the power set of Ω

(b) Let $\mathbf{A} = \{\{a\}\}$, find the σ -field generated by \mathbf{A}

(c) If $\boldsymbol{B} = \{\{a\}, \{a, b\}\}$, find the σ -field generated by \boldsymbol{B}

Question.2 (5+3=8-Points)

(a) Let \mathfrak{F} be the class of all intervals of the form (x, ∞) , $a \in \mathfrak{R}$. Is \mathfrak{F} is a σ -filed? Explain.

(b) In a population of N members, there are F females, and N - F males. If you select a sample of size n(n < N) from this population, what is the probability that all members are males?

Question.3 (10+8=18-Points)

(a) Suppose that μ_1 and μ_2 are two measurable two functions on (Ω, \mathfrak{S}) . Show that the function $\mu = \mu_1 + \mu_2$ is also a measurable function on (Ω, \mathfrak{S}) .

(b) Show that if A and B are independent then A^c, B^c are also independent

Question.4 (7-Points)

Let $\Omega = \{0, 1, 2, ..., n\}$, *n* is positive integer, and \mathfrak{S} be the σ -filed generated by Ω . Assume that for any $A \in \Omega$, $P(A) = \sum_{x \in A} \binom{n}{x} p^x (1-p)^{n-x}$, x = 0, 1, ..., n, 0 . Does <math>P(.) define a probability measure on (Ω, \mathfrak{S}) ? Explain.

Question.5 (8-Points)

Let $(\Omega, \mathfrak{S}, P)$ be a probability space and let $A \in \mathfrak{S}$ with P(A) > 0, let $H \in \mathfrak{S}$, and $P_A(H) = P\{H|A\}$. Show that $(\Omega, \mathfrak{S}, P_H)$ is a probability space

Question .6 (6+6+2=14-Points)

Let $\{A_n\}, n \ge 1$ be the set of all points (x, y) that are given by:

$$A_n = \left\{ (x, y) : 0 < x \le 1 + \frac{1}{n}, \frac{1}{n+1} \le y < 1 \right\}$$

(a) Find, if exist, $\limsup A_n$

(b) Find, if exist, $\liminf A_n$

(c) Dose $\lim_{n \to \infty} A_n$ exists? Explain

Question .7 (3+4+4=11-Points)

An unbiased die is manufactured such that: two faces with number 0, two faces with number 1 and the last two with number 4 if the die is tossed two independent times. Then

(a) Write down the sample space Ω

(b) Let X be the number of times that 1 turns up, i.e. for every $\omega \in \Omega$, $X(\omega) =$ Number of 1^s in ω . Show that X is a random variable.

(c) Find the distribution function of the random variable \boldsymbol{X}

Question .8 (12-Points)

Let $F(x) = \frac{1}{\pi} \tan^{-1}(x) + \frac{1}{2}$, $-\infty < x < \infty$. Show that F(x) defines a distribution function (DF) of the random variable X